Skip to main content

Advertisement

Log in

Physico-Chemical Analysis and Correlation Study of Water Resources of the Sukinda Chromite Mining Area, Odisha, India

Physikochemische Analyse und Korrelationsuntersuchungen der Wasserresourcen im Sukinda Chromitbergbaudistrikt, Odisha, Indien

Análisis fisicoquímico y estudio de correlación de recursos de agua del área minera de cromita, Sukinda, Odisha, India

印度奥里萨邦苏金达铬矿矿区水资源的理-化性质及相关性分析

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

The Sukinda Valley of the Jajpur district of Odisha produces 98 % of India’s chromite ore. The region’s groundwater and Damsal Nala, the valley’s primary stream, have been contaminated by Cr(VI) due to surface runoff and leachates from overburden dumps. Samples of mine water, surface water, and groundwater were analyzed. The concentration of total Cr in the mine water ranged from 0.46 to 1.26 mg/L before treatment and between 0.03 and 0.45 mg/L after treatment. Effluent Cr(VI) ranged between 0.02 and 0.3 mg/L. Thus, discharge water at some mine sites still contain Cr(VI) at concentrations above the permissible effluent limits of 0.1 mg/L for inland surface water. Concentrations of Cr(VI) ranged from 0.02 to 0.23 mg/L in the Damsal Nala and nil to 0.13 mg/L in tube well water, sometimes exceeding the permissible limits, but were acceptable in dug wells. Pearson’s correlation analysis revealed that Cr(VI) positively correlated with sulfate (0.854) in surface water, hardness (0.379) and pH (0.361) in groundwater, and total Cr (0.970) in mine water.

Zusammenfassung

Das Sukindatal im Jajpur Distrikt Odishas produziert 98 % von Indiens Chromiterz. Das Grundwasser der Region und des Damsal Nala, des bedeutendsten Flusses des Tales, wurden durch Cr(VI) kontaminiert, verursacht durch Oberflächenabfluß und Sickerwasser aus Abraumdeponien. Proben von Bergbauwasser, Oberflächenwasser und Grundwasser wurden analysiert. Die Gesamtkonzentration von Cr im Bergbauwasser lag vor der Behandlung zwischen 0.46 bis 1.26 mg/L und danach zwischen 0.03 and 0.45 mg/L. Cr(VI) im Endablauf reichte von 0.02 bis 0.3 mg/L. Ablaufwässer einiger Bergbaue enthalten immer noch Cr(VI) Konzentrationen über dem für Oberflächenwasser zulässigen Grenzwert von 0.1 mg/L. Im Damsal Nala lagen die Konzentrationen von Cr(VI) zwischen 0.02 und 0.23 mg/L; in Wasser aus Bohrbrunnen von Null bis 0.13 mg/L und damit teils über den zulässigen Grenzwerten; Wasser aus Schachtbrunnen war akzeptabel. Pearson Korrelationsanalysen ergaben eine positive Korrelation von Cr(VI) mit Sulfat (0.854) im Oberflächenwasser, mit Härte (0.379) und pH (0.361) in Grundwasser, und gesamt Cr (0.970) in Bergbauwasser.

Resumen

El valle Sukinda del distrito Jajpur de Odisha produce 98 % del mineral cromita de India. El agua subterranean de la region y Damsal Nala, el curso de agua primario del valle, han sido contraminado por Cr(VI) debido a las escorrentías superficiales y a los lixiviados de las colas. Se analizaron las muestras de agua de mina, agua superficial y agua subterránea. La concentración de Cr total en el agua de mina se mantuvo en el rango de 0.46 a 1.26 mg/L antes del tratamiento y entre 0.03 y 0.45 mg/L después del tratamiento. En el efluente, Cr(VI) se mantuvo en el rango entre 0.02 y 0.3 mg/L. Así, el agua de descarga en algunos lugares de la mina contenía Cr(VI) a concentraciones por encima del límite permisible de 0.1 mg/L para aguas superficiales. Las concentraciones de Cr(VI) estuvieron entre 0.02 a 0.23 mg/L en el Damsal Nala y de nulo a 0.13 mg/L en el agua de pozo, algunas veces excediendo los límites permisibles pero fueron aceptables en los pozos excavados. El análisis de correlación de Pearson reveló que Cr(VI) correlacionó positivamente con sulfato (0.854) en el agua superficial, dureza (0.379) y pH (0.361) en el agua subterránea y Cr total (0.970) en el agua de mina.

印度奥里萨邦苏金达铬矿矿区水资源的理-化性质及相关性分析

印度98 %的铬矿产自奥里萨邦(Odisha)扎亚普(Jajpur)地区的苏金达谷(Sukinda Valley)。矿区内排土厂的地表径流及废石淋滤已使矿区内的地下水和苏金达河谷主要河流达姆萨那拉河(Damsal Nala)为Cr(VI)污染。论文采样分析了区内的矿山废水、地表水和地下水。矿山废水的总铬(Cr)浓度在被处理前后分别为0.46–1.26 mg/L和0.03–0.45 mg/L。排放废水的Cr(VI)浓度为0.02–0.3 mg/L,某些矿排放废水的Cr(VI)浓度仍超过0.1 mg/L的地表水体排放标准。达姆萨那拉河水(Damsal Nala)的Cr(VI)浓度为0.02–0.23 mg/L。管井井水的铬浓度为0–0.13 mg/L,有时超过允许排放标准。大口井井水的铬浓度在允许范围之内。皮尔逊相关分析表明,Cr(VI)与地表水中的硫酸盐浓度(0.854)、地下水的硬度(0.379)和pH值 (0.361)、矿山废水的总铬浓度(0.970)呈正相关。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbasi SA, Soni R (1984) Teratogenic effects of chromium (VI) in the environment as evidenced by the impact of larvae of amphibian Rana tigrina: implications in the environmental management of chromium. Int J Environ Stud 23:131–137

    Article  Google Scholar 

  • APHA (American Public Health Assoc) (2005) Standard methods for the examination of water and wastewater, 21st edn. APHA, American Water Works Assoc, Water Environment Fed, Washington, DC

    Google Scholar 

  • BIS (Bureau of Indian standards) 2490 part I (1981) Tolerance limits for industrial effluents

  • BIS (Bureau of Indian Standards) 10500 (1991) Water quality guidelines for drinking water and aquatic life

  • Dhakate R, Singh VS (2008) Heavy metal contamination in groundwater due to mining activities in Sukinda Valley, Orissa-A case study. J Geogr Reg Plan 1(4):058–067

    Google Scholar 

  • Dutta K (2015) Chromite mining: disbalancing the aquatic environment of Sukinda Valley. Res J Recent Sci 4:80–93

    Google Scholar 

  • Mancuso TF (1951) Occupational cancer and other health hazards in a chrome plant: a medical appraisal. II. Clinical and toxicological aspects. Ind Med Surg 20:393–407

    Google Scholar 

  • Mancuso TF, Heuper WC (1951) Occupational cancer and other health hazards in a chrome plant: a medical appraisal. I. Lung cancers in chromate workers. Ind Med Surg 20:358–363

    Google Scholar 

  • Mishra H, Sahu HB (2013) Environmental scenario of chromite mining at Sukinda Valley—a review. Int J Env Eng Manage 4(4):287–292

    Google Scholar 

  • Mohanty M, Patra HK (2011) Attenuation of chromium toxicity in mine waste water hyacinth. J Stress Phys Biochem 7(4):336–346

    Google Scholar 

  • Ono BL (1988) Genetic approaches in the study of chromium toxicity and resistance in yeast and bacteria. In: Nriagu JO, Niebor R (eds) Chromium in the natural and human environments. Wiley, New York, pp 351–368

    Google Scholar 

  • Tiwary RK, Dhakate R, Rao VA, Singh VS (2005) Assessment and prediction of contaminant migration in ground water from chromite waste dump. Environ Geol 48:420–429

    Article  Google Scholar 

  • Waterhouse JAH (1975) Cancer among chromium platers. Br J Cancer 32(2):262

    Article  Google Scholar 

  • WHO (1984) Guidelines for drinking water quality. World Health Organization. Washington, DC, pp 333–335

    Google Scholar 

  • Yassi A, Nieboer E (1988) Carcinogenicity of chromium compounds. In: Nriagu JO, Nieboer E (eds) Chromium in the natural and human environments. Wiley, New York, pp 443–496

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Council of Scientific and Industrial Research, New Delhi and Dr. Amalendu Sinha, Director of the CSIR-CIMFR, Dhanbad, for financial help through the networking project and for his able guidance. We also acknowledge the cooperation provided by colleagues in the Environment Management Group during the field survey and laboratory analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binu Kumari.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. 1

Physicochemical analysis of Inlet and Outlet mine water of Sukinda chromite mining area in February 2011. Odd-number sites (e.g. E3, E5) represent Inlet water and even- numbered sites (e.g. E2, E4) represent Outlet water that has undergone treatment. (PDF 130 kb)

Fig. 2

Physicochemical analysis of surface water of Sukinda chromite mining area, February 2011. (PDF 123 kb)

Fig. 3

Physicochemical analysis of ground water from collected from a hand pumps well, Sukinda, February 2011. (PDF 138 kb)

Fig. 4

Physicochemical analysis of ground water from a dug well, Sukinda, February 2011. (PDF 126 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, B., Tiwary, R.K. & Srivastava, K.K. Physico-Chemical Analysis and Correlation Study of Water Resources of the Sukinda Chromite Mining Area, Odisha, India. Mine Water Environ 36, 356–362 (2017). https://doi.org/10.1007/s10230-016-0409-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-016-0409-1

Keywords

Navigation