Skip to main content
Log in

Molecular Aspects of Ultraviolet Radiation-induced Apoptosis in the Skin

  • Published:
Journal of Cutaneous Medicine and Surgery

Abstract

Background

Apoptosis, or programmed cell death, is an essential physiological process that controls cell numbers during physiological processes, and eliminates abnormal cells that can potentially harm an organism.

Objective

This review summarizes our current state of knowledge of apoptosis induction in skin by UV radiation.

Methods

A review of the literature was undertaken focusing on cell death in the skin secondary to UV radiation.

Results

It is evident that a number of apoptotic pathways, both intrinsic and extrinsic, are induced following exposure to damaging UV radiation.

Conclusion

Although our understanding of the apoptotic processes is gradually increasing, many important aspects remain obscure. These include interconnections between pathways, wavelength-specific differences and cell type differences.

Sommaire

Antécédents

L’apoptose, ou mort cellulaire programmée, est un processus physiologique essentiel au contrôle du nombre de cellules durant les processus physiologiques et à l’élimination des cellules anormales qui représentent un danger potentiel pour l’organisme.

Objectif

Le présent article fait le point sur nos connaissances actuelles quant à l’induction de l’apoptose au niveau de la peau au moyen des rayons UV.

Méthodes

Un examen des publications scientifiques traitant de la mort cellulaire à la suite de l’exposition de la peau aux rayons UV a été fait.

Résultats

Il est évident qu’un nombre de voies apoptotiques, intrinsèques et extrinsèques, sont déclenchées à la suite de l’exposition à des rayons UV néfastes.

Conclusion

Bien que notre compréhension des processus apoptotiques augmente graduellement, nombreux restent les aspects importants qui demeurent obscurs, notamment les interconnexions entre les voies, les différences propres aux ondes et aux types de cellules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972; 26:239–257

    PubMed  CAS  Google Scholar 

  2. Savill J, Gregory C, Haslett C. Cell biology. Eat me or die. Science 2003; 302:1516–1517

    Article  PubMed  CAS  Google Scholar 

  3. Ziegler U, Groscurth P. Morphological features of cell death. News Physiol Sci 2004; 19:124–128

    Article  PubMed  CAS  Google Scholar 

  4. Zuzarte-Luis V, Hurle JM. Programmed cell death in the developing limb. Int J Dev Biol 2002; 46:871–876

    PubMed  CAS  Google Scholar 

  5. Vaux DL, Korsmeyer SJ. Cell death in development. Cell 1999; 96:245–254

    Article  PubMed  CAS  Google Scholar 

  6. Rathmell JC, Thompson CB. Pathways of apoptosis in lymphocyte development, homeostasis, and disease. Cell 2002; 109 Suppl:S97–107

    Article  PubMed  CAS  Google Scholar 

  7. Fadeel B, Orrenius S, Zhivotovsky B. Apoptosis in human disease: a new skin for the old ceremony? Biochem Biophys Res Commun 1999; 266:699–717

    Article  PubMed  CAS  Google Scholar 

  8. de Laat A, van der Leun JC, Gruijl FR. Carcinogenesis induced by UVA (365-nm) radiation: the dose-time dependence of tumor formation in hairless mice. Carcinogenesis 1997; 18:1013–1020

    Article  PubMed  Google Scholar 

  9. Slee EA, Keogh SA, Martin SJ. Cleavage of BID during cytotoxic drug and UV radiation-induced apoptosis occurs downstream of the point of Bcl-2 action and is catalysed by caspase-3: a potential feedback loop for amplification of apoptosis-associated mitochondrial cytochrome c release. Cell Death Differ 2000; 7:556–565

    Article  PubMed  CAS  Google Scholar 

  10. Ziegler A, Jonason AS, Leffell DJ, et al. Sunburn and p53 in the onset of skin cancer. Nature 1994; 372:773–776

    Article  PubMed  CAS  Google Scholar 

  11. Cleaver JE, Bootsma D. Xeroderma pigmentosum: biochemical and genetic characteristics. Annu Rev Genet 1975; 9:19–38

    Article  PubMed  CAS  Google Scholar 

  12. Kraemer KH, Lee MM, Scotto J. Xeroderma pigmentosum. Cutaneous, ocular, and neurologic abnormalities in 830 published cases. Arch Dermatol 1987; 123:241–250

    Article  PubMed  CAS  Google Scholar 

  13. Kahn HS, Tatham LM, Patel AV, et al. Increased cancer mortality following a history of nonmelanoma skin cancer. Jama 1998; 280:910–912

    Article  PubMed  CAS  Google Scholar 

  14. Ichihashi M, Ueda M, Budiyanto A, et al. UV-induced skin damage. Toxicology 2003; 189:21–39

    Article  PubMed  CAS  Google Scholar 

  15. Kulms D, Schwarz T. Independent contribution of three different pathways to ultraviolet-B-induced apoptosis. Biochem Pharmacol 2002; 64:837–841

    Article  PubMed  CAS  Google Scholar 

  16. Guzman E, Langowski JL, Owen-Schaub L. Mad dogs, Englishmen and apoptosis: the role of cell death in UV-induced skin cancer. Apoptosis 2003; 8:315–325

    Article  PubMed  CAS  Google Scholar 

  17. Campbell C, Quinn AG, Ro YS, et al. p53 mutations are common and early events that precede tumor invasion in squamous cell neoplasia of the skin. J Invest Dermatol 1993; 100:746–748

    Article  PubMed  CAS  Google Scholar 

  18. Deng C, Zhang P, Harper JW, et al. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 1995; 82:675–684

    Article  PubMed  CAS  Google Scholar 

  19. Tron VA, Trotter MJ, Tang L, et al. p53-regulated apoptosis is differentiation dependent in ultraviolet B-irradiated mouse keratinocytes. Am J Pathol 1998; 153:579–585

    PubMed  CAS  Google Scholar 

  20. Chaturvedi V, Sitailo LA, Qin JZ, et al. Knockdown of p53 levels in human keratinocytes accelerates Mcl-1 and Bcl-x(L) reduction thereby enhancing UV-light induced apoptosis. Oncogene 2005 Jun 6; [Epub ahead of print].

  21. Li G, Mitchell DL, Ho VC, et al. Decreased DNA repair but normal apoptosis in ultraviolet-irradiated skin of p53-transgenic mice. Am J Pathol 1996;148:1113–1123

    PubMed  CAS  Google Scholar 

  22. Chresta CM, Hickman JA. Oddball p53 in testicular tumors. Nat Med 1996; 2:745–746

    Article  PubMed  CAS  Google Scholar 

  23. Ford JM, Hanawalt PC. Expression of wild-type p53 is required for efficient global genomic nucleotide excision repair in UV-irradiated human fibroblasts. J Biol Chem 1997; 272:28073–28080

    Article  PubMed  CAS  Google Scholar 

  24. Smith ML, Fornace AJ Jr. p53-mediated protective responses to UV irradiation. Proc Natl Acad Sci USA 1997; 94:12255–12257

    Article  PubMed  CAS  Google Scholar 

  25. Young LC, Peters AC, Maeda T, et al. DNA mismatch repair protein Msh6 is required for optimal levels of ultraviolet-B-induced apoptosis in primary mouse fibroblasts. J Invest Dermatol 2003; 121:876–880

    Article  PubMed  CAS  Google Scholar 

  26. Peters AC, Young LC, Maeda T, et al. Mammalian DNA mismatch repair protects cells from UVB-induced DNA damage by facilitating apoptosis and p53 activation. DNA Repair (Amst) 2003; 2:427–435

    Article  CAS  Google Scholar 

  27. Young LC, Hays JB, Tron VA, et al. DNA mismatch repair proteins: potential guardians against genomic instability and tumorigenesis induced by ultraviolet photoproducts. J Invest Dermatol 2003; 121:435–440

    Article  PubMed  CAS  Google Scholar 

  28. Maeda T, Chua PP, Chong MT, et al. Nucleotide excision repair genes are upregulated by low-dose artificial ultraviolet B: evidence of a photoprotective SOS response? J Invest Dermatol 2001; 117:1490–1497

    Article  PubMed  CAS  Google Scholar 

  29. Hildesheim J, Bulavin DV, Anver MR, et al. Gadd45a protects against UV irradiation-induced skin tumors, and promotes apoptosis and stress signaling via MAPK and p53. Cancer Res 2002; 62:7305–7315

    PubMed  CAS  Google Scholar 

  30. Maeda T, Hanna AN, Sim AB, et al. GADD45 regulates G2/M arrest, DNA repair, and cell death in keratinocytes following ultraviolet exposure. J Invest Dermatol 2002; 119:22–26

    Article  PubMed  CAS  Google Scholar 

  31. Smith ML, Ford JM, Hollander MC, et al. p53-mediated DNA repair responses to UV radiation: studies of mouse cells lacking p53, p21, and/or gadd45 genes. Mol Cell Biol 2000; 20:3705–3714

    Article  PubMed  CAS  Google Scholar 

  32. Takekawa M, Saito H. A family of stress-inducible GADD45-like proteins mediate activation of the stress-responsive MTK1/MEKK4 MAPKKK. Cell 1998; 95:521–530

    Article  PubMed  CAS  Google Scholar 

  33. Jin S, Mazzacurati L, Zhu X, et al. Gadd45a contributes to p53 stabilization in response to DNA damage. Oncogene 2003; 22:8536–8540

    Article  PubMed  CAS  Google Scholar 

  34. Menon EL, Perera R, Kuhn RJ, et al. Reactive oxygen species formation by UV-A irradiation of urocanic acid and the role of trace metals in this chemistry. Photochem Photobiol 2003; 78:567–575

    Article  PubMed  CAS  Google Scholar 

  35. Ichiki H, Sakurada H, Kamo N, et al. Generation of active oxygens, cell deformation and membrane potential changes upon UV-B irradiation in human blood cells. Biol Pharm Bull 1994; 17:1065–1069

    PubMed  CAS  Google Scholar 

  36. Reid TM, Loeb LA. Tandem double CC–>TT mutations are produced by reactive oxygen species. Proc Natl Acad Sci USA 1993; 90:3904–3907

    Article  PubMed  CAS  Google Scholar 

  37. Zhang X, Rosenstein BS, Wang Y, et al. Identification of possible reactive oxygen species involved in ultraviolet radiation-induced oxidative DNA damage. Free Radic Biol Med 1997; 23:980–985

    Article  PubMed  CAS  Google Scholar 

  38. Renzing J, Hansen S, Lane DP. Oxidative stress is involved in the UV activation of p53. J Cell Sci 1996; 109 (Pt 5):1105–1112

    PubMed  CAS  Google Scholar 

  39. Vile GF. Active oxygen species mediate the solar ultraviolet radiation-dependent increase in the tumour suppressor protein p53 in human skin fibroblasts. FEBS Lett 1997; 412:70–74

    Article  PubMed  CAS  Google Scholar 

  40. Devary Y, Gottlieb RA, Smeal T, et al. The mammalian ultraviolet response is triggered by activation of Src tyrosine kinases. Cell 1992; 71:1081–1091

    Article  PubMed  CAS  Google Scholar 

  41. Farber JL. Mechanisms of cell injury by activated oxygen species. Environ Health Perspect 1994; 102 Suppl 10:17–24

    PubMed  CAS  Google Scholar 

  42. Thorburn A. Death receptor-induced cell killing. Cell Signal 2004; 16:139–144

    Article  PubMed  CAS  Google Scholar 

  43. Gutierrez-Steil C, Wrone-Smith T, Sun X, et al. Sunlight-induced basal cell carcinoma tumor cells and ultraviolet-B-irradiated psoriatic plaques express Fas ligand (CD95L). J Clin Invest 1998; 101:33–39

    PubMed  CAS  Google Scholar 

  44. Hill LL, Ouhtit A, Loughlin SM, et al. Fas ligand: a sensor for DNA damage critical in skin cancer etiology. Science 1999; 285:898–900

    Article  PubMed  CAS  Google Scholar 

  45. Leverkus M, Yaar M, Gilchrest BA. Fas/Fas ligand interaction contributes to UV-induced apoptosis in human keratinocytes. Exp Cell Res 1997; 232:255–262

    Article  PubMed  CAS  Google Scholar 

  46. Faris M, Latinis KM, Kempiak SJ, et al. Stress-induced Fas ligand expression in T cells is mediated through a MEK kinase 1-regulated response element in the Fas ligand promoter. Mol Cell Biol 1998; 18:5414–5424

    PubMed  CAS  Google Scholar 

  47. Faris M, Kokot N, Latinis K, et al. The c-Jun N-terminal kinase cascade plays a role in stress-induced apoptosis in Jurkat cells by up-regulating Fas ligand expression. J Immunol 1998; 160:134–144

    PubMed  CAS  Google Scholar 

  48. Kasibhatla S, Brunner T, Genestier L, et al. DNA damaging agents induce expression of Fas ligand and subsequent apoptosis in T lymphocytes via the activation of NF-kappa B and AP-1. Mol Cell 1998; 1:543–551

    Article  PubMed  CAS  Google Scholar 

  49. Muller M, Wilder S, Bannasch D, et al. p53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs. J Exp Med 1998; 188:2033–2045

    Article  PubMed  CAS  Google Scholar 

  50. Zhuang S, Kochevar IE. Ultraviolet A radiation induces rapid apoptosis of human leukemia cells by Fas ligand-independent activation of the Fas death pathways. Photochem Photobiol 2003; 78:61–67

    Article  PubMed  CAS  Google Scholar 

  51. Aragane Y, Kulms D, Metze D, et al. Ultraviolet light induces apoptosis via direct activation of CD95 (Fas/APO-1) independently of its ligand CD95L. J Cell Biol 1998; 140:171–182

    Article  PubMed  CAS  Google Scholar 

  52. Lewis M, Tartaglia LA, Lee A, et al. Cloning and expression of cDNAs for two distinct murine tumor necrosis factor receptors demonstrate one receptor is species specific. Proc Natl Acad Sci USA 1991; 88:2830–2834

    Article  PubMed  CAS  Google Scholar 

  53. Zhuang L, Wang B, Shinder GA, et al. TNF receptor p55 plays a pivotal role in murine keratinocyte apoptosis induced by ultraviolet B irradiation. J Immunol 1999; 162:1440–1447

    PubMed  CAS  Google Scholar 

  54. Kock A, Schwarz T, Kirnbauer R, et al. Human keratinocytes are a source for tumor necrosis factor alpha: evidence for synthesis and release upon stimulation with endotoxin or ultraviolet light. J Exp Med 1990; 172:1609–1614

    Article  PubMed  CAS  Google Scholar 

  55. Bazzoni F, Kruys V, Shakhov A, et al. Analysis of tumor necrosis factor promoter responses to ultraviolet light. J Clin Invest 1994; 93:56–62

    Article  PubMed  CAS  Google Scholar 

  56. Corsini E, Bruccoleri A, Marinovich M, et al. In vitro mechanism(s) of ultraviolet-induced tumor necrosis factor-alpha release in a human keratinocyte cell line. Photodermatol Photoimmunol Photomed 1995; 11:112–118

    PubMed  CAS  Google Scholar 

  57. Kibitel J, Hejmadi V, Alas L, et al. UV-DNA damage in mouse and human cells induces the expression of tumor necrosis factor alpha. Photochem Photobiol 1998; 67:541–546

    Article  PubMed  CAS  Google Scholar 

  58. Leverkus M, Yaar M, Eller MS, et al. Post-transcriptional regulation of UV induced TNF-alpha expression. J Invest Dermatol 1998; 110:353–357

    Article  PubMed  CAS  Google Scholar 

  59. de Kossodo S, Cruz PD Jr, Dougherty I, et al. Expression of the tumor necrosis factor gene by dermal fibroblasts in response to ultraviolet irradiation or lipopolysaccharide. J Invest Dermatol 1995; 104:318–322

    Article  PubMed  Google Scholar 

  60. Clingen PH, Berneburg M, Petit-Frere C, et al. Contrasting effects of an ultraviolet B and an ultraviolet A tanning lamp on interleukin-6, tumour necrosis factor-alpha and intercellular adhesion molecule-1 expression. Br J Dermatol 2001; 145:54–62

    Article  PubMed  CAS  Google Scholar 

  61. Avalos-Diaz E, Alvarado-Flores E, Herrera-Esparza R. UV-A irradiation induces transcription of IL-6 and TNF alpha genes in human keratinocytes and dermal fibroblasts. Rev Rhum Engl Ed 1999; 66:13–19

    PubMed  CAS  Google Scholar 

  62. Sheikh MS, Antinore MJ, Huang Y et al. Ultraviolet-irradiation-induced apoptosis is mediated via ligand independent activation of tumor necrosis factor receptor 1. Oncogene 1998; 17:2555–2563

    Article  PubMed  CAS  Google Scholar 

  63. Pan G, O’Rourke K, Chinnaiyan AM, et al. The receptor for the cytotoxic ligand TRAIL. Science 1997; 276:111–113

    Article  PubMed  CAS  Google Scholar 

  64. Sheridan JP, Marsters SA, Pitti RM, et al. Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 1997; 277:818–821

    Article  PubMed  CAS  Google Scholar 

  65. MacFarlane M, Ahmad M, Srinivasula SM, et al. Identification and molecular cloning of two novel receptors for the cytotoxic ligand TRAIL. J Biol Chem 1997; 272:25417–25420

    Article  PubMed  CAS  Google Scholar 

  66. Walczak H, Degli-Esposti MA, Johnson RS, et al. TRAIL-R2: a novel apoptosis-mediating receptor for TRAIL. Embo J 1997; 16:5386–5397

    Article  PubMed  CAS  Google Scholar 

  67. Wiley SR, Schooley K, Smolak PJ, et al. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 1995; 3:673–682

    Article  PubMed  CAS  Google Scholar 

  68. Ravi R, Bedi GC, Engstrom LW, et al. Regulation of death receptor expression and TRAIL/Apo2L-induced apoptosis by NF-kappaB. Nat Cell Biol 2001; 3:409–416

    Article  PubMed  CAS  Google Scholar 

  69. Sheikh MS, Burns TF, Huang Y, et al. p53-dependent and -independent regulation of the death receptor KILLER/DR5 gene expression in response to genotoxic stress and tumor necrosis factor alpha. Cancer Res 1998; 58:1593–1598

    PubMed  CAS  Google Scholar 

  70. Guan B, Yue P, Clayman GL, et al. Evidence that the death receptor DR4 is a DNA damage-inducible, p53-regulated gene. J Cell Physiol 2001; 188:98–105

    Article  PubMed  CAS  Google Scholar 

  71. Godar DE, Lucas AD. Spectral dependence of UV-induced immediate and delayed apoptosis: the role of membrane and DNA damage. Photochem Photobiol 1995; 62:108–113

    PubMed  CAS  Google Scholar 

  72. Godar DE. Preprogrammed and programmed cell death mechanisms of apoptosis: UV-induced immediate and delayed apoptosis. Photochem Photobiol 1996; 63:825–830

    PubMed  CAS  Google Scholar 

  73. Nishigaki R, Mitani H, Tsuchida N, et al. Effect of cyclobutane pyrimidine dimers on apoptosis induced by different wavelengths of UV. Photochem Photobiol 1999; 70:228–235

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor A. Tron.

About this article

Cite this article

Chow, J., Tron, V.A. Molecular Aspects of Ultraviolet Radiation-induced Apoptosis in the Skin. J Cutan Med Surg 9, 289–295 (2005). https://doi.org/10.1007/s10227-005-0109-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10227-005-0109-0

Keywords

Navigation