Skip to main content
Log in

Encoding Algebraic Power Series

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

The division algorithm for ideals of algebraic power series satisfying Hironaka’s box condition is shown to be finite when expressed suitably in terms of the defining polynomial codes of the series. In particular, the codes of the reduced standard basis of the ideal can be constructed effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alonso, M.E., Castro-Jiménez, F.J., Hauser, H., Koutschan, C.: Gabrielov’s counterexample to nested linear Artin approximation. Preprint 2017.

  2. Alonso, M.E., Mora, T., Raimondo, M.: A computational model for algebraic power series. J. Pure Appl. Alg. 77 (1992), 1-38.

    Article  MathSciNet  MATH  Google Scholar 

  3. Amasaki, M.: Applications of the generalized Weierstrass preparation theorem to the study of homogeneous ideals. Trans. Amer. Math. Soc. 317 (1990), 1-43.

    Article  MathSciNet  MATH  Google Scholar 

  4. Aroca, J.-M., Hironaka, H., Vicente, J.-L.: The theory of the maximal contact. Memorias Mat. Inst. Jorge Juan Madrid 29 (1975).

  5. Artin, M.: Grothendieck topologies. Mimeographed notes, Harvard University 1962.

    MATH  Google Scholar 

  6. Artin, M.: Algebraic approximations of structures over complete local rings. Publ. Math. I.H.E.S. 36 (1969), 23-58.

  7. Artin, M., Mazur, B.: On periodic points. Ann. Math. 81 (1965), 82-99.

    Article  MathSciNet  MATH  Google Scholar 

  8. Baclawski, K., Garsia, A.: Combinatorial decomposition of a class of rings. Adv. Math. 39 (1981), 155-184.

    Article  MathSciNet  MATH  Google Scholar 

  9. Bochnak, J., Coste, M., Roy, M.-F.: Géométrie Algébrique Réelle. Springer 1987.

  10. Bostan, A., Kauers, M.: The complete generating function for Gessel walks is algebraic. With an appendix by Mark van Hoeij. Proc. Amer. Math. Soc. 138 (2010), no. 9, 3063-3078.

    Article  MathSciNet  MATH  Google Scholar 

  11. Bostan, A., Kurkova, I., Raschel, K.: A human proof of Gessel’s lattice path conjecture. Trans. Amer. Math. Soc. 369 (2017), 1365-1393.

    Article  MathSciNet  MATH  Google Scholar 

  12. Bousquet-Mélou, M.: An elementary solution of Gessel’s walks in the quadrant. Adv. Math. 303 (2016), 1171-1189.

    Article  MathSciNet  MATH  Google Scholar 

  13. Bousquet-Mélou, M., Mishna, M.: Walks with small steps in the quarter plane. Contemp. Math. 520 (2010), 1-39.

    Article  MathSciNet  MATH  Google Scholar 

  14. Bousquet-Mélou, M., Petkovšek, M.: Linear recurrences with constant coefficients. Discrete Math. 225 (2000), 51-75.

    Article  MathSciNet  MATH  Google Scholar 

  15. Bousquet-Mélou, M., Petkovšek, M.: Walks confined in a quadrant are not always \(D\)-finite. Theor. Comp. Sci. 307 (2003), 257-276.

    Article  MathSciNet  MATH  Google Scholar 

  16. Brieskorn, E., Knörrer, H.: Plane Algebraic Curves. Birkhäuser 1986.

  17. Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry. Springer 1998.

  18. De Jong, T., Pfister, G.: Local Analytic Geometry. Springer 2000.

  19. Gabrielov, A.: The formal relations between analytic functions. Funk. Anal. Pril. 5 (1971), 64-65.

    MathSciNet  Google Scholar 

  20. Galligo, A.: A propos du Théorème de Préparation de Weierstrass. Lecture Notes in Math. 409, 543-579. Springer 1973.

  21. Gerdt, V., Blinkov, Y.: Involutive bases of polynomial ideals. Simplification of systems of algebraic and differential equations with applications. Math. Comput. Simulation 45 no. 5-6 (1998), 519-541.

    Article  MathSciNet  MATH  Google Scholar 

  22. Gräbe, H.-G.: The tangent cone algorithm and homogenization. J. Pure Appl. Algebra 97 (1994), 303-312.

    Article  MathSciNet  MATH  Google Scholar 

  23. Gräbe, H.-G.: Algorithms in local algebra. J. Symb. Comp. 19 (1995), 545-557.

    Article  MathSciNet  MATH  Google Scholar 

  24. Grauert, H.: Über die Deformation isolierter Singularitäten analytischer Mengen. Invent. Math. 15 (1972), 171-198.

    Article  MathSciNet  MATH  Google Scholar 

  25. Greuel, G.-M., Pfister, G.: A Singular Introduction to Commutative Algebra, 2nd edition. Springer 2007.

  26. Greuel, G.M., Pfister, G., Schönemann, H.: Singular. A Computer Algebra System for Polynomial Computations. Universität Kaiserslautern, www.singular.uni-kl.de.

  27. Hironaka, H.: Idealistic exponents of singularity. In: Algebraic Geometry, The Johns Hopkins Centennial Lectures. Johns Hopkins University Press 1977.

  28. Hironaka, H.: Resolution of singularities of an algebraic variety over a field of characteristic zero. Ann. Math. 79 (1964), 109-326.

    Article  MathSciNet  MATH  Google Scholar 

  29. Hauser, H., Müller, G.: A rank theorem for analytic maps between power series spaces. Publ. Math. I.H.E.S. 80 (1995), 95-115.

  30. Janet, M.: Sur les systèmes d’équations aux dérivées partielles. J. Math. \(8^{\rm e}\) sér., III (1920), 65-151.

  31. Janet, M.: Leçons sur les systèmes d’équations aux dérivées partielles. Gauthiers-Villars 1929.

  32. Kurke, H., Pfister, G., Rozcen, M.: Henselsche Ringe und algebraische Geometrie. Dt. Verlag der Wissenschaften, Berlin 1975.

    MATH  Google Scholar 

  33. Lafon, J.-P.: Séries formelles algébriques. C. R. Acad. Sci. Paris 260 (1965), 3238-3241.

    MathSciNet  MATH  Google Scholar 

  34. Lazard, D.: Gröbner bases, Gaussian elimination and resolutions of systems of algebraic equations. In: Computer algebra, London 1983. Lecture Notes Comp. Sci. 162, 146-156. Springer 1983.

  35. Mishna, M.: Classifying lattice walks restricted to the quarter plane. J. Combin. Theory Ser. A 116 (2009), no. 2, 460-477.

    Article  MathSciNet  MATH  Google Scholar 

  36. Mora, T.: An algorithm to compute the equations of tangent cones. Proceedings Eurocam 82. Lecture Notes Comp. Sci. 144, 158-165. Springer 1982.

  37. Mumford, D.: The Red Book of Varietes and Schemes. Springer, 2nd edition 1999.

  38. Nagata, M.: On the theory of Henselian rings. Nagoya Math. J. 5 (1953), 5-57, and 7 (1954), 1-19.

  39. Nagata, M.: Local rings. Interscience 1962.

  40. Popescu, D.: General Néron desingularization. Nagoya Math. J. 100 (1985), 97-126.

    Article  MathSciNet  MATH  Google Scholar 

  41. Popescu, D.: General Néron desingularization and approximation. Nagoya Math. J. 104 (1986), 85-115.

    Article  MathSciNet  MATH  Google Scholar 

  42. Raynaud, M.: Anneaux Locaux Henséliens. Lecture Notes Math. 169. Springer 1970.

  43. Rees, D.: A basis theorem for polynomial modules. Proc. Cambridge Phil. Soc. 52 (1956), 12-16.

    Article  MathSciNet  MATH  Google Scholar 

  44. Riquier, C.: Les Systèmes d’Équations aux Dérivées Partielles. Gauthier-Villars 1910.

  45. Ruiz, J.: The basic theory of power series. Vieweg 1993.

  46. Seiler, W.: A combinatorial approach to involution and \(\delta \)-regularity I: Involutive bases in polynomial algebras of solvable type. Appl. Algebra Engrg. Comm. Comput. 20, no. 3-4 (2009), 207-259.

    Article  MathSciNet  MATH  Google Scholar 

  47. Seiler, W.: A combinatorial approach to involution and \(\delta \)-regularity II: Structure analysis of polynomial modules with Pommaret bases. Appl. Algebra Engrg. Comm. Comput. 20, no. 3-4 (2009), 261-338.

    Article  MathSciNet  MATH  Google Scholar 

  48. Seiler, W.: Spencer cohomology, differential equations, and Pommaret bases. In: Gröbner Bases in Symbolic Analysis, 169-216. Radon Ser. Comput. Appl. Math. 2. De Gruyter 2007.

  49. Séminaire de Géométrie Algébrique 4, vol. 2 (Artin, M., Grothendieck, A., Verdier, J.L., eds.). Publ. Math. I.H.E.S. 32 (1972).

  50. Spivakovsky, M.: A new proof of D. Popescu’s theorem on smoothing of ring homomorphisms. J. Amer. Math. Soc. 12 (1999), no. 2, 381-444.

    Article  MathSciNet  MATH  Google Scholar 

  51. Sturmfels, B., White, N.: Computing combinatorial decompositions of rings. Combinatorica 11 (1991), 275-293.

  52. Swan, R.: Néron-Popescu desingularization, Algebra and geometry (Taipei, 1995), 135-192, Lect. Algebra Geom., 2, Intern. Press 1998.

    Article  MathSciNet  MATH  Google Scholar 

  53. van der Hoeven, J.: Effective power series computations. Preprint 2014.

  54. Wagner, D.: Algebraische Potenzreihen. Diploma Thesis, Univ. Innsbruck 2005.

  55. Wilczynski, E.J.: On the form of the power series for an algebraic function. Amer. Math. Monthly 26 (1919), 9-12.

    Article  MathSciNet  MATH  Google Scholar 

  56. Zariski, O.: Analytical irreducibility of normal varieties. Ann. Math. 49 (1948), 352-361.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very indebted to T. Mora, W. Seiler, G.-M. Greuel, G. Rond and O. Villamayor for many valuable comments and helpful suggestions during the preparation of this article. W. Seiler pointed out an inaccuracy in an earlier version of the manuscript, indicated the relation of echelons and Janet bases with his notion of \(\delta \)-regularity and Pommaret division, and provided several important references. We are also grateful to two anonymous referees for valuable suggestions of how to improve the exposition. Part of the work on the article has been done during visits of the first two authors to the University of Vienna and the Erwin Schrödinger Institute, of the third author to the Universities of Seville and Complutense de Madrid, and during the special semester on Artin approximation within the Chaire Jean Morlet of the third author at CIRM, Luminy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Alonso.

Additional information

Communicated by Joseph Landsberg.

M.E.A. acknowledges support from MEC, 2011-22435, and UCM, Grupo 910444; F.J.C.-J. from MTM2010-19336, MTM2013-40455-P and Feder; H.H. from the Austrian Science Fund FWF through projects P-21461 and P-25652. Part of the work was done during the special semester on Artin approximation within the Chaire Jean Morlet of the third author at CIRM, Luminy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alonso, M.E., Castro-Jiménez, F.J. & Hauser, H. Encoding Algebraic Power Series. Found Comput Math 18, 789–833 (2018). https://doi.org/10.1007/s10208-017-9354-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-017-9354-z

Keywords

Mathematics Subject Classification

Navigation