Skip to main content
Log in

Lattice Structures for Attractors II

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

The algebraic structure of the attractors in a dynamical system determines much of its global dynamics. The collection of all attractors has a natural lattice structure, and this structure can be detected through attracting neighborhoods, which can in principle be computed. Indeed, there has been much recent work on developing and implementing general computational algorithms for global dynamics, which are capable of computing attracting neighborhoods efficiently. Here we address the question of whether all of the algebraic structure of attractors can be captured by these methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Arai, W. D. Kalies, H. Kokubu, K. Mischaikow, H. Oka and P. Pilarczyk, A database schema for the analysis of global dynamics of multiparameter systems, SIAM J. Appl. Dyn. Syst. 8 (2009), 757–789.

    Article  MathSciNet  MATH  Google Scholar 

  2. H. Ban and W. D. Kalies, A computational approach to Conley’s decomposition theorem, J. Comp. Nonlinear Dynamics 1 (2006), 312–319.

    Article  Google Scholar 

  3. E. Boczko, W.D. Kalies, and K. Mischaikow, Polygonal approximation of flows, Topology and its Applications 154 (2007), 2501–2520.

    Article  MathSciNet  MATH  Google Scholar 

  4. O. Bournez, D.S. Graça, A. Pouly, and N. Zhong, Computability and computational complexity of the evolution of nonlinear dynamical systems, in The Nature of Computation. Logic, Algorithms, Applications, Lecture Notes in Computer Science, vol. 7921, (P. Bonizzoni, V. Brattka, and B. Löwe, eds.), Springer, New York, 2013, pp. 12–21.

  5. M. Braverman and M. Yampolsky, Computability of Julia sets, in series Algorithms and Computation in Mathematics, vol. 23, Springer-Verlag, Berlin, 2009.

    MATH  Google Scholar 

  6. J. Bush, M. Gameiro, S. Harker, H. Kokubu, K. Mischaikow, I. Obayashi and P. Pilarczyk, Combinatorial-topological framework for the analysis of global dynamics, Chaos: An Interdisciplinary Journal of Nonlinear Science 22 (2012) : 047508.

    MathSciNet  MATH  Google Scholar 

  7. J. Bush, Justin and K. Mischaikow, Coarse dynamics for coarse modeling: an example from population biology, ENTROPY 16 (2014), 3379-3400.

  8. C. Conley, Isolated Invariant Sets and the Morse Index, vol. 38 of CBMS Regional Conference Series in Mathematics, American Mathematical Society, Providence, R.I., 1978.

  9. B. A. Davey and H. A. Priestley, Introduction to Lattices and Order, 2nd edition, Cambridge University Press, New York, 2002.

    Book  MATH  Google Scholar 

  10. R.D. Franzosa, The connection matrix theory for Morse decompositions, Trans. Amer. Math. Soc. 311 (1989), 561–592.

    Article  MathSciNet  MATH  Google Scholar 

  11. R. D. Franzosa and K. Mischaikow, The connection matrix theory for semiflows on (not necessarily locally compact) metric spaces, J. Differential Equations 71 (1988), 270–287.

    Article  MathSciNet  MATH  Google Scholar 

  12. T. Gedeon, H. Kokubu, K. Mischaikow, and H. Oka, Global dynamics for steep sigmoidal nonlinearities in two dimensions, in preparation (2015).

  13. A. Goullet, S. Harker, W.D. Kalies, D. Kasti, and K. Mischaikow, Efficient computation of Lyapunov functions for Morse decompositions, To appear in DCDS-S (2015).

  14. W. Kalies, K. Mischaikow and R. C. Vandervorst, An algorithmic approach to chain recurrence, Found. Comput. Math. 5 (2005), 409–449.

    Article  MathSciNet  MATH  Google Scholar 

  15. W. Kalies, K. Mischaikow and R. C. Vandervorst, Lattice structures for attractors I, Journal of Computational Dynamics 1 (2014), 307–338.

    Article  MathSciNet  MATH  Google Scholar 

  16. W. Kalies, K. Mischaikow and R. C. Vandervorst, Lattice structures for attractors III, in preparation (2015).

  17. R.P. McGehee and T. Wiandt, Conley decomposition for closed relations, Journal of Difference Equations and Applications 12 (2006), 1–47.

    Article  MathSciNet  MATH  Google Scholar 

  18. R. McGehee, Attractors for closed relations on compact Hausdorff spaces, Indiana University Mathematics Journal 41 (1992), 1165–1209.

    Article  MathSciNet  MATH  Google Scholar 

  19. F. Miraglia, An Introduction to Partially Ordered Structures and Sheaves, vol. 1 of Contemporary Logic Series, Polimetrica Scientific Publisher, Milan, Italy, 2006.

  20. M. Mrozek, The Conley index on compact ANRs is of finite type, Results in Mathematics. Resultate der Mathematik 18 (1990) 306–313.

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Mrozek, An algorithm approach to the Conley index theory, J. Dynam. Differential Equations 11 (1999), 711–734.

    Article  MathSciNet  MATH  Google Scholar 

  22. J. W. Robbin and D. A. Salamon, Lyapunov maps, simplicial complexes and the Stone functor, Ergodic Theory Dynam. Systems 12 (1992), 153–183.

    Article  MathSciNet  MATH  Google Scholar 

  23. C. Robinson, Dynamical Systems: Stability, Symbolic Dynamics, and Chaos, 2nd edition, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1999.

    MATH  Google Scholar 

  24. S. Vickers, Topology via Logic, vol. 5 of Cambridge Tracts in Theoretical Computer Science, Cambridge University Press, Cambridge, 1989.

  25. R.C. Walker, The Stone-Cech Compactification, Springer-Verlag, New York, 1974.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William D. Kalies.

Additional information

Communicated by Richard Schwartz.

The first author is partially supported by NSF Grant NSF-DMS-0914995, the second author is partially supported by NSF Grants NSF-DMS-0835621, 0915019, 1125174, 1248071, and contracts from AFOSR and DARPA. The present work is part of the third authors activities within CAST, a Research Network Program of the European Science Foundation ESF.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalies, W.D., Mischaikow, K. & Vandervorst, R.C.A. Lattice Structures for Attractors II. Found Comput Math 16, 1151–1191 (2016). https://doi.org/10.1007/s10208-015-9272-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-015-9272-x

Keywords

Mathematics Subject Classification

Navigation