Skip to main content
Log in

The Number of Singular Vector Tuples and Uniqueness of Best Rank-One Approximation of Tensors

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper we discuss the notion of singular vector tuples of a complex-valued \(d\)-mode tensor of dimension \(m_1\times \cdots \times m_d\). We show that a generic tensor has a finite number of singular vector tuples, viewed as points in the corresponding Segre product. We give the formula for the number of singular vector tuples. We show similar results for tensors with partial symmetry. We give analogous results for the homogeneous pencil eigenvalue problem for cubic tensors, i.e., \(m_1=\cdots =m_d\). We show the uniqueness of best approximations for almost all real tensors in the following cases: rank-one approximation; rank-one approximation for partially symmetric tensors (this approximation is also partially symmetric); rank-\((r_1,\ldots ,r_d)\) approximation for \(d\)-mode tensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. S. Banach, Über homogene Polynome in (\(L^2\)), Studi. Math. 7 (1938), 36–44.

    Google Scholar 

  2. E. Carlini and J. Kleppe, Ranks derived from multilinear maps, J. Pure Appl. Algebra 215 (2011), 1999–2004.

    Article  MATH  MathSciNet  Google Scholar 

  3. D. Cartwright and B. Sturmfels, The number of eigenvectors of a tensor, Linear Algebra Appl. 438 (2013), no. 2, 942–952.

    Article  MATH  MathSciNet  Google Scholar 

  4. B. Chen, S. He, Z. Li and S. Zhang, Maximum block improvement and polynomial optimization, SIAM J. Optim. 22 (2012), 87–107.

    Article  MATH  MathSciNet  Google Scholar 

  5. S. S. Chern, Characteristic classes of Hermitian Manifolds, Ann. Math. 47 (1946), 85–121.

    Article  MATH  MathSciNet  Google Scholar 

  6. L. de Lathauwer, B. de Moor and J. Vandewalle, On the best rank-1 and rank-\((R_1,\ldots , R_N)\) approximation of higher-order tensors, SIAM J. Matrix Anal. Appl. 21 (2000), 1324–1342.

    Article  MATH  MathSciNet  Google Scholar 

  7. S. Friedland, Best rank one approximation of real symmetric tensors can be chosen symmetric, Front. Math. China 8 (2013), 19 40.

    Google Scholar 

  8. W. Fulton, Intersection Theory, Springer, Berlin (1984).

  9. I. M. Gelfand, M. M. Kapranov and A. V. Zelevinsky, Discriminants, Resultants and Multidimensional Determinants, Birkhäuser, Boston, 1994.

  10. G. H. Golub and C. F. Van Loan, Matrix Computations, John Hopkins University Press, Baltimore, MD, 3rd Ed., (1996).

  11. P. Griffiths and J. Harris, Principles of Algebraic Geometry, Wiley (1978).

  12. R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, vol. 52, Springer, New York (1977).

  13. C. J. Hillar and L.-H. Lim. Most tensor problems are NP hard, J. ACM 60 (2013), no. 6, Art. 45, 39 pp.

  14. F. Hirzebruch, Topological Methods in Algebraic Geometry, Grundlehren der math. Wissenschaften, vol. 131, Springer (1966).

  15. S. Kobayashi, Differential Geometry of Complex Vector Bundles, Princeton University Press (1987).

  16. L.-H. Lim. Singular values and eigenvalues of tensors: a variational approach. Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP ’05), vol. 1 (2005), 129–132.

  17. L. Lyusternik and L. Shnirel’man, Topological methods in variational problems and their application to the differential geometry of surfaces. (Russian) Uspehi Matem. Nauk (N.S.) 2 (1947), no. 1(17), 166–217.

  18. C. Massri, Algorithm to find a maximum of a multilinear map over a product of spheres, J. Approx. Theory 166 (2013), 19–41.

    Article  MATH  MathSciNet  Google Scholar 

  19. G. Ni, L. Qi, F. Wang and Y. Wang, The degree of the \(E\)-characteristic polynomial of an even order tensor, J. Math. Anal. Appl. 329 (2007), no. 2, 1218–1229.

    Google Scholar 

  20. L. Oeding and G. Ottaviani, Eigenvectors of tensors and algorithms for Waring decomposition, J. Symb. Comput. 54 (2013), 9–35.

    Article  MATH  MathSciNet  Google Scholar 

  21. L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symb. Comput. 40 (2005) 1302–1324.

    Article  MATH  Google Scholar 

  22. L. Qi, Eigenvalues and invariants of tensors, J. Math. Anal. Appl. 325 (2007) 1363–1377.

    Article  MATH  MathSciNet  Google Scholar 

  23. X. Zhang, C. Ling and L. Qi, The best rank-1 approximation of a symmetric tensor and related spherical optimization problems, SIAM J. Matrix Anal. Appl. 33 (2012) 806–821.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

Shmuel Friedland was supported by National Science Foundation Grant DMS-1216393. Giorgio Ottaviani is member of INDAM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Ottaviani.

Additional information

Communicated by Peter Buergisser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedland, S., Ottaviani, G. The Number of Singular Vector Tuples and Uniqueness of Best Rank-One Approximation of Tensors. Found Comput Math 14, 1209–1242 (2014). https://doi.org/10.1007/s10208-014-9194-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-014-9194-z

Keywords

Mathematics Subject Classification

Navigation