Skip to main content
Log in

On the Expected Number of Zeros of Nonlinear Equations

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper investigates the expected number of complex roots of nonlinear equations. Those equations are assumed to be analytic, and to belong to certain inner product spaces. Those spaces are then endowed with the Gaussian probability distribution.

The root count on a given domain is proved to be ‘additive’ with respect to a product operation of functional spaces. This allows one to deduce a general theorem relating the expected number of roots for unmixed and mixed systems. Examples of root counts for equations that are not polynomials, nor exponential sums are given at the end.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Armentano, J.-P. Dedieu, A note about the average number of real roots of a Bernstein polynomial system, J. Complex. 25(4), 339–342 (2009). doi:10.1016/j.jco.2009.03.001.

    Article  MathSciNet  MATH  Google Scholar 

  2. N. Aronszajn, Theory of reproducing kernels, Trans. Am. Math. Soc. 68, 337–404 (1950).

    Article  MathSciNet  MATH  Google Scholar 

  3. J.-M. Azaïs, M. Wschebor, Level Sets and Extrema of Random Processes and Fields (Wiley, Hoboken, 2009).

    Book  MATH  Google Scholar 

  4. D.N. Bernstein, The number of roots of a system of equations, Funkc. Anal. Prilozh. 9(3), 1–4 (1975) (Russian).

    Google Scholar 

  5. D.N. Bernstein, A.G. Kušnirenko, A.G. Hovanskiĭ, Newton polyhedra, Usp. Mat. Nauk 31(3(189)), 201–202 (1976) (Russian).

    Google Scholar 

  6. L. Blum, F. Cucker, M. Shub, S. Smale, Complexity and Real Computation (Springer, New York, 1998). With a foreword by Richard M. Karp.

    Book  Google Scholar 

  7. H. Brezis, Analyse Fonctionnelle, Collection Mathématiques Appliquées Pour la Maîtrise. [Collection of Applied Mathematics for the Master’s Degree] (Masson, Paris, 1983) (French). Théorie et applications [Theory and applications].

    Google Scholar 

  8. P. Bürgisser, F. Cucker, Condition: The Geometry of Numerical Algorithms. Grundlehren der mathematischen Wissenschaften, vol. 349 (Springer, Berlin, 2013).

    Book  Google Scholar 

  9. F. Cucker, T. Krick, G. Malajovich, M. Wschebor, A numerical algorithm for zero counting. II. Distance to ill-posedness and smoothed analysis, J. Fixed Point Theory Appl. 6(2), 285–294 (2009). doi:10.1007/s11784-009-0127-4.

    Article  MathSciNet  MATH  Google Scholar 

  10. F. Cucker, T. Krick, G. Malajovich, M. Wschebor, A numerical algorithm for zero counting. III. Randomization and condition, Adv. Appl. Math. 48(1), 215–248 (2012). doi:10.1016/j.aam.2011.07.001.

    Article  MathSciNet  MATH  Google Scholar 

  11. J.-P. Dedieu, G. Malajovich, On the number of minima of a random polynomial, J. Complex. 24(2), 89–108 (2008). doi:10.1016/j.jco.2007.09.003.

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Gromov, Convex sets and Kähler manifolds, in Advances in Differential Geometry and Topology (World Scientific, Teaneck, 1990), pp. 1–38.

    Chapter  Google Scholar 

  13. J.B. Hough, M. Krishnapur, Y. Peres, B. Virág, Zeros of Gaussian Analytic Functions and Determinantal Point Processes. University Lecture Series, vol. 51 (Am. Math. Soc., Providence, 2009).

    MATH  Google Scholar 

  14. M. Kac, On the average number of real roots of a random algebraic equation, Bull. Am. Math. Soc. 49, 314–320 (1943).

    Article  MATH  Google Scholar 

  15. M. Kac, On the average number of real roots of a random algebraic equation. II, Proc. Lond. Math. Soc. (2) 50, 390–408 (1949).

    Google Scholar 

  16. K. Kaveh, A.G. Khovanskii, Mixed volume and an extension of intersection theory of divisors, Mosc. Math. J. 10(2), 343–375 (2010). (English, with English and Russian summaries).

    MathSciNet  MATH  Google Scholar 

  17. K. Kaveh, A.G. Khovanskii, Mixed volume and an extension of intersection theory of divisors, Mosc. Math. J. 10(2), 479 (2010). (English, with English and Russian summaries).

    MathSciNet  Google Scholar 

  18. K. Kaveh, A.G. Khovanskii, Newton–Okounkov bodies, semigroups of integral points, graded algebras and intersection theory, Ann. Math. (2) 176(2), 925–978 (2012). doi:10.4007/annals.2012.176.2.5.

    Article  MathSciNet  MATH  Google Scholar 

  19. B.Ya. Kazarnovskiĭ, Newton polyhedra and roots of systems of exponential sums, Funkc. Anal. Prilozh. 18(4), 40–49 (1984) (Russian).

    Google Scholar 

  20. B.Ya. Kazarnovskiĭ, Newton polyhedra and roots of systems of exponential sums, Funkc. Anal. Prilozh. 18(4), 96 (1984) (Russian).

    Google Scholar 

  21. B.Ya. Kazarnovskiĭ, “Newton polyhedra” of generalized functions, Izv. Akad. Nauk SSSR, Ser. Mat. 68(2), 53–70 (2004) (Russian, with Russian summary); English transl., Izv. Math. 68(2), 273–289 (2004). doi:10.1070/IM2004v068n02ABEH000475.

    Article  Google Scholar 

  22. S.G. Krantz, Function Theory of Several Complex Variables (AMS Chelsea, Providence, 2001). Reprint of the 1992 edition.

    MATH  Google Scholar 

  23. A.G. Kušnirenko, Newton polyhedra and Bezout’s theorem, Funkc. Anal. Prilozh. 10(3), 82–83 (1976) (Russian).

    Google Scholar 

  24. J.E. Littlewood, A.C. Offord, On the number of real roots of a random algebraic equation. III, Rec. Math. [Mat. Sb.] N.S. 12(54), 277–286 (1943) (English, with Russian summary).

    MathSciNet  Google Scholar 

  25. J.E. Littlewood, A.C. Offord, On the distribution of the zeros and a-values of a random integral function. I, J. Lond. Math. Soc. 20, 130–136 (1945).

    Article  MathSciNet  Google Scholar 

  26. G. Malajovich, Nonlinear equations, in 28 o Colóquio Brasileiro de Matemática. Publicações de Matemática (IMPA, Rio de Janeiro, 2011).

    Google Scholar 

  27. G. Malajovich, J.M. Rojas, Polynomial systems and the momentum map, in Foundations of Computational Mathematics, Hong Kong, 2000 (World Scientific, River Edge, 2000), pp. 251–266.

    Google Scholar 

  28. G. Malajovich, J.M. Rojas, High probability analysis of the condition number of sparse polynomial systems, Theor. Comput. Sci. 315(2–3), 524–555 (2004). doi:10.1016/j.tcs.2004.01.006.

    MathSciNet  Google Scholar 

  29. J. Maurice Rojas, On the average number of real roots of certain random sparse polynomial systems, in The Mathematics of Numerical Analysis. Lectures in Appl. Math., vol. 32, Park City, UT, 1995 (Am. Math. Soc., Providence, 1996), pp. 689–699.

    Google Scholar 

  30. F. Minding, On the determination of the degree of an equation obtained by elimination, in Topics in Algebraic Geometry and Geometric Modeling. Contemp. Math., vol. 334 (Am. Math. Soc., Providence, 2003), pp. 351–362. Translated from the German (Crelle, 1841) and with a commentary by D. Cox and J.M. Rojas.

    Chapter  Google Scholar 

  31. F. Nazarov, M. Sodin, Random complex zeroes and random nodal lines, in Proceedings of the International Congress of Mathematicians, vol. III (Hindustan Book Agency, New Delhi, 2010), pp. 1450–1484.

    Google Scholar 

  32. A. Okounkov, Brunn–Minkowski inequality for multiplicities, Invent. Math. 125(3), 405–411 (1996). doi:10.1007/s002220050081.

    Article  MathSciNet  MATH  Google Scholar 

  33. Y. Peres, B. Virág, Zeros of the i.i.d. Gaussian power series: a conformally invariant determinantal process, Acta Math. 194(1), 1–35 (2005). doi:10.1007/BF02392515.

    Article  MathSciNet  MATH  Google Scholar 

  34. B. Shiffman, S. Zelditch, Random polynomials with prescribed Newton polytope, J. Am. Math. Soc. 17(1), 49–108 (2004). doi:10.1090/S0894-034703-00437-5 (electronic).

    Article  MathSciNet  MATH  Google Scholar 

  35. M. Shub, S. Smale, Complexity of Bézout’s theorem. I. Geometric aspects, J. Am. Math. Soc. 6(2), 459–501 (1993). doi:10.2307/2152805.

    MathSciNet  MATH  Google Scholar 

  36. M. Shub, S. Smale, Complexity of Bezout’s theorem. II. Volumes and probabilities, in Computational Algebraic Geometry. Progr. Math., vol. 109, Nice, 1992 (Birkhäuser, Boston, 1993), pp. 267–285.

    Chapter  Google Scholar 

  37. M. Shub, S. Smale, Complexity of Bezout’s theorem. III. Condition number and packing, J. Complex. 9(1), 4–14 (1993). doi:10.1006/jcom.1993.1002. Festschrift for Joseph F. Traub, Part I.

    Article  MathSciNet  MATH  Google Scholar 

  38. M. Shub, S. Smale, Complexity of Bezout’s theorem. V. Polynomial time, Theor. Comput. Sci. 133(1), 141–164 (1994). doi:10.1016/0304-3975(94)90122-8. Selected papers of the Workshop on Continuous Algorithms and Complexity (Barcelona, 1993).

    Article  MathSciNet  MATH  Google Scholar 

  39. M. Shub, S. Smale, Complexity of Bezout’s theorem. IV. Probability of success; extensions, SIAM J. Numer. Anal. 33(1), 128–148 (1996). doi:10.1137/0733008.

    Article  MathSciNet  MATH  Google Scholar 

  40. M. Sodin, Zeros of Gaussian analytic functions, Math. Res. Lett. 7(4), 371–381 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  41. M. Sodin, B. Tsirelson, Random complex zeroes. I. Asymptotic normality, Isr. J. Math. 144, 125–149 (2004). doi:10.1007/BF02984409.

    Article  MathSciNet  MATH  Google Scholar 

  42. H. Weyl, The Theory of Groups and Quantum Mechanics (Dover, New York, 1949). XVII+422 pp.

    MATH  Google Scholar 

Download references

Acknowledgements

I would like to thank Steven Finch and Kiumars Kaveh for suggesting corrections. Also, I would like to thank three anonymous referees who provided valuable criticism and pointed out important references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregorio Malajovich.

Additional information

Communicated by Teresa Krick.

Partially supported by CNPq, CAPES (Brasil) and by MathAmSud international cooperation grant Complexity.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malajovich, G. On the Expected Number of Zeros of Nonlinear Equations. Found Comput Math 13, 867–884 (2013). https://doi.org/10.1007/s10208-013-9171-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-013-9171-y

Keywords

Mathematics Subject Classification (2010)

Navigation