Skip to main content
Log in

Symbolic Computation of Lax Pairs of Partial Difference Equations using Consistency Around the Cube

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

A three-step method due to Nijhoff and Bobenko & Suris to derive a Lax pair for scalar partial difference equations (PΔEs) is reviewed. The method assumes that the PΔEs are defined on a quadrilateral, and consistent around the cube. Next, the method is extended to systems of PΔEs where one has to carefully account for equations defined on edges of the quadrilateral. Lax pairs are presented for scalar integrable PΔEs classified by Adler, Bobenko, and Suris and systems of PΔEs including the integrable two-component potential Korteweg–de Vries lattice system, as well as nonlinear Schrödinger and Boussinesq-type lattice systems. Previously unknown Lax pairs are presented for PΔEs recently derived by Hietarinta (J. Phys. A, Math. Theor. 44:165204, 2011). The method is algorithmic and is being implemented in Mathematica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Use the Mathematica function PowerExpand or simply cube the expression.

References

  1. M.J. Ablowitz, F.J. Ladik, A nonlinear difference scheme and inverse scattering, Stud. Appl. Math. 55, 213–229 (1976).

    MathSciNet  Google Scholar 

  2. M.J. Ablowitz, F.J. Ladik, On the solution of a class of nonlinear partial difference equations, Stud. Appl. Math. 57, 1–12 (1977).

    MathSciNet  Google Scholar 

  3. V.E. Adler, A.I. Bobenko, Yu.B. Suris, Classification of integrable equations on quad-graphs. The consistency approach, Commun. Math. Phys. 233, 513–543 (2003).

    MathSciNet  MATH  Google Scholar 

  4. J. Atkinson, A multidimensionally consistent version of Hirota’s discrete KdV equation, J. Phys. A, Math. Theor. 45, 222001 (2012).

    Article  Google Scholar 

  5. J. Atkinson, M. Nieszporski, Multi-quadratic quad equations: integrable cases from a factorised-discriminant hypothesis. arXiv:1204.0638v1 [nlin.SI] (2012).

  6. A.I. Bobenko, Yu.B. Suris, Integrable systems on quad-graphs, Int. Math. Res. Not. 1, 573–611 (2002).

    Article  MathSciNet  Google Scholar 

  7. T.J. Bridgman, LaxPairPartialDifferenceEquations.m: A Mathematica package for the symbolic computation of Lax pairs of nonlinear partial difference equations defined on quadrilaterals. Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, CO, 2012; software available at http://inside.mines.edu/~whereman under scientific software.

  8. C.S. Gardner, J.M. Green, M.D. Kruskal, R.M. Miura, Method for solving the Korteweg–de Vries equation, Phys. Rev. Lett. 19, 1095–1097 (1967).

    Article  MATH  Google Scholar 

  9. W. Hereman, LaxPairLattices.m: A Mathematica program for the symbolic computation of Lax pairs of two-dimensional scalar nonlinear partial difference equations defined on quadrilaterals. Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, CO, 2009, available at http://inside.mines.edu/~whereman/software/LaxPairLattices.

  10. J. Hietarinta, Boussinesq-like multi-component lattice equations and multi-dimensional consistency, J. Phys. A, Math. Theor. 44, 165204 (2011).

    Article  MathSciNet  Google Scholar 

  11. P. Lax, Integrals of nonlinear equations of evolution and solitary waves, Commun. Pure Appl. Math. 21, 467–490 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  12. A.V. Mikhailov, From automorphic Lie algebras to discrete integrable systems, in Programme on Discrete Integrable Systems (Isaac Newton Institute for Mathematical Sciences, Cambridge, 2009). http://www.newton.ac.uk/programmes/DIS/seminars/061714001.html.

    Google Scholar 

  13. F.W. Nijhoff, On some “Schwarzian” equations and their discrete analogues, in Algebraic Aspects of Integrable Systems, In memory of Irene Dorfman, ed. by A.S. Fokas, I.M. Gel’fand (Birkhäuser, New York, 1996), pp. 237–260.

    Google Scholar 

  14. F.W. Nijhoff, Lax pair for the Adler (lattice Krichever–Novikov) system, Phys. Lett. A 297, 49–58 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  15. F.W. Nijhoff, V.G. Papageorgiou, H.W. Capel, G.R.W. Quispel, The lattice Gel’fand–Dikii hierarchy, Inverse Probl. 8, 597–621 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  16. F.W. Nijhoff, G.R.W. Quispel, H.W. Capel, Direct linearization of nonlinear difference-difference equations, Phys. Lett. A 97, 125–128 (1983).

    Article  MathSciNet  Google Scholar 

  17. F.W. Nijhoff, A.J. Walker, The discrete and continuous Painlevé VI hierarchy and the Garnier systems, Glasg. Math. J. 43, 109–123 (2001).

    Article  MathSciNet  Google Scholar 

  18. V.G. Papageorgiou, F.W. Nijhoff, H.W. Capel, Integrable mappings and nonlinear integrable lattice equations, Phys. Lett. A 147, 106–114 (1990).

    Article  MathSciNet  Google Scholar 

  19. G.R.W. Quispel, H.W. Capel, V.G. Papageorgiou, F.W. Nijhoff, Integrable mappings derived from soliton equations, Physica A 173, 243–266 (1991).

    Article  MathSciNet  Google Scholar 

  20. G.R.W. Quispel, H.W. Capel, J.A.G. Roberts, Duality for discrete integrable systems, J. Phys. A, Math. Gen. 38, 3965–3980 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  21. O. Rojas, From discrete integrable systems to cellular automata. PhD thesis, Department of Mathematics and Statistics, La Trobe University, Melbourne, Australia (2009).

  22. O. Rojas, P.H. van der Kamp, G.R.W. Quispel, Lax representation for integrable O\(\mathrm{\Delta}\)Es, in Symmetry and Perturbation Theory, Proc. Int. Conf. on SPT 2007, ed. by G. Gaeta, R. Vitolo, S. Walcher, Otranto, Italy, June 2–9, 2007 (World Scientific, Singapore, 2007), p. 272.

    Google Scholar 

  23. Yu.B. Suris, A.I. Bobenko, Discrete Differential Geometry: Integrable Structure, vol. 98 (American Mathematical Society, Philadelphia, 2008).

    Google Scholar 

  24. A.S. Tongas, F.W. Nijhoff, The Boussinesq integrable system. Compatible lattice and continuum structures, Glasg. Math. J. 47A, 205–219 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  25. D. Tran, A method to obtain closed-form expressions for integrals of integrable ordinary difference equations. Honors thesis, Department of Mathematics and Statistics, La Trobe University, Melbourne, Australia (2007).

  26. S.P. Tsarev, T. Wolf, Classification of 3-dimensional integrable scalar discrete equations, Lett. Math. Phys. 84, 31–39 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  27. P.H. van der Kamp, G.R.W. Quispel, The staircase method: integrals for periodic reductions of integrable lattice equations, J. Phys. A, Math. Theor. 43, 465207 (2010).

    Article  Google Scholar 

  28. H.D. Wahlquist, F.B. Estabrook, Prolongation structures in nonlinear evolution equations, J. Math. Phys. 16, 1–7 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  29. A. Walker, Similarity reductions and integrable lattice equations. PhD thesis, University of Leeds, Leeds, UK (2001).

  30. T. Wolf, On solving large systems of polynomial equations appearing in discrete differential geometry, Program. Comput. Softw. 34, 75–83 (2008).

    Article  MATH  Google Scholar 

  31. P. Xenitidis private communication, 2009.

  32. P. Xenitidis, F.W. Nijhoff, Symmetries and conservation laws of lattice Boussinesq equations, Phys. Lett. A (2012). doi:10.1016/j.physleta.2012.06.004.

    MathSciNet  MATH  Google Scholar 

  33. V.E. Zakharov, S.V. Manakov, S.P. Novikov, L.P. Pitaevskii, Theory of Solitons: The Inverse Scattering Method (Plenum, New York, 1984).

    Google Scholar 

  34. V.E. Zakharov, A.B. Shabat, A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering problem, Funct. Anal. Appl. 8, 226–235 (1974).

    Article  MATH  Google Scholar 

  35. D.-J. Zhang, S.-L. Zhao, F.W. Nijhoff, Direct linearization of extended lattice BSQ systems, Stud. Appl. Math. (2012). doi:10.1111/j.1467-9590-2012.00552.x.

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The research is supported in part by the Australian Research Council (ARC) and the National Science Foundation (NSF) of the U.S.A. under Grant No. CCF-0830783. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of ARC or NSF.

WH is grateful for the hospitality and support of the Department of Mathematics and Statistics of La Trobe University (Melbourne, Australia) where this project was started in November 2007.

The authors thank the Isaac Newton Institute for Mathematical Sciences (Cambridge, UK) where the work was continued during the Programme on Discrete Integrable Systems in Spring 2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Bridgman.

Additional information

Communicated by Elizabeth Mansfield.

At the occasion of his 60th birthday, we like to dedicate this paper to Peter Olver, whose work has inspired us throughout our careers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bridgman, T., Hereman, W., Quispel, G.R.W. et al. Symbolic Computation of Lax Pairs of Partial Difference Equations using Consistency Around the Cube. Found Comput Math 13, 517–544 (2013). https://doi.org/10.1007/s10208-012-9133-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-012-9133-9

Keywords

Mathematics Subject Classification

Navigation