Skip to main content
Log in

Meshfree Thinning of 3D Point Clouds

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

An efficient data reduction scheme for the simplification of a surface given by a large set X of 3D point-samples is proposed. The data reduction relies on a recursive point removal algorithm, termed thinning, which outputs a data hierarchy of point-samples for multiresolution surface approximation. The thinning algorithm works with a point removal criterion, which measures the significances of the points in their local neighbourhoods, and which removes a least significant point at each step. For any point x in the current point set YX, its significance reflects the approximation quality of a local surface reconstructed from neighbouring points in Y. The local surface reconstruction is done over an estimated tangent plane at x by using radial basis functions. The approximation quality of the surface reconstruction around x is measured by using its maximal deviation from the given point-samples X in a local neighbourhood of x. The resulting thinning algorithm is meshfree, i.e., its performance is solely based upon the geometry of the input 3D surface point-samples, and so it does not require any further topological information, such as point connectivities. Computational details of the thinning algorithm and the required data structures for efficient implementation are explained and its complexity is discussed. Two examples are presented for illustration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. T. Silva, Point set surfaces, IEEE Vis. (2001), 21–28.

  2. M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. T. Silva, Computing and rendering point set surfaces, IEEE Trans. Vis. Comput. Graph. 9(1) (2003), 3–15.

    Article  Google Scholar 

  3. D. Brodsky and B. Watson, Model simplification through refinement, in Proceedings of Graphics Interface (Montreal, 2000), pp. 221–228. A.K. Peters, New York, 2000.

    Google Scholar 

  4. M. D. Buhmann, Radial Basis Functions, Cambridge University Press, Cambridge, 2003.

    MATH  Google Scholar 

  5. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms (2nd edn.), MIT Press, Cambridge, 2001.

    MATH  Google Scholar 

  6. L. Demaret, N. Dyn, M. S. Floater, and A. Iske, Adaptive thinning for terrain modelling and image compression, in Advances in Multiresolution for Geometric Modelling (N. A. Dodgson, M. S. Floater, M. A. Sabin, eds.), pp. 321–340, Springer, Berlin, 2005.

    Google Scholar 

  7. J. Duchon, Splines minimizing rotation-invariant semi-norms in Sobolev spaces, in Constructive Theory of Functions of Several Variables (W. Schempp, K. Zeller, eds.), pp. 85–100, Springer, Berlin, 1977.

    Chapter  Google Scholar 

  8. N. Dyn, M. S. Floater, and A. Iske, Adaptive thinning for bivariate scattered data, J. Comput. Appl. Math. 145(2) (2002), 505–517.

    Article  MATH  MathSciNet  Google Scholar 

  9. S. Fleishman, D. Cohen-Or, M. Alexa, and C. T. Silva, Progressive point set surfaces, ACM Trans. Graph. 22(4) (2003), 997–1011.

    Article  Google Scholar 

  10. L. De Floriani and P. Magillo, Multiresolution mesh representation: models and data structures, in Tutorials on Multiresolution in Geometric Modelling (A. Iske, E. Quak, M. S. Floater, eds.), pp. 363–417, Springer, Berlin, 2002.

    Google Scholar 

  11. F. G. Friedlander and M. S. Joshi, Introduction to the Theory of Distributions (2nd edn.), Cambridge University Press, Cambridge, 1999.

    Google Scholar 

  12. M. Garland and P. Heckbert, Surface simplification using quadratic error metrics, in SIGGRAPH’97. ACM, Washington, 1997.

    Google Scholar 

  13. H. Hoppe, Surface reconstruction from unorganized points, Ph.D. thesis, University of Washington, 1994.

  14. H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle, Surface reconstruction from unorganized points, in SIGGRAPH’92, vol. 26, pp. 71–78, ACM, Washington, 1992.

    Google Scholar 

  15. A. Iske, Multiresolution Methods in Scattered Data Modelling, Springer, Berlin, 2004.

    MATH  Google Scholar 

  16. D. Levin, The approximation power of moving least-squares, Math. Comput. 67 (1998), 1517–1531.

    Article  MATH  Google Scholar 

  17. F. J. Narcowich, J. D. Ward, and H. Wendland, Sobolev bounds on functions with scattered zeros, with applications to radial basis function surface fitting, Math. Comput. 74 (2005), 643–763.

    MathSciNet  Google Scholar 

  18. F. J. Narcowich, J. D. Ward, and H. Wendland, Sobolev error estimates and a Bernstein inequality for scattered data interpolation via radial basis functions, Constr. Approx. 24 (2006), 175–186.

    Article  MATH  MathSciNet  Google Scholar 

  19. M. Pauly, M. Gross, and L. P. Kobbelt, Efficient simplification of point-sampled surfaces, in Proceedings of the Conference on Visualization’02, pp. 163–170, IEEE, Washington, 2002.

    Google Scholar 

  20. J. Rossignac and P. Borrel, Multi-resolution 3d approximations for rendering complex scenes, in Modeling in Computer Graphics: Methods and Application (B. Falcidieno, T.L. Kunii, eds.), pp. 455–465, Springer, Berlin, 1993.

    Google Scholar 

  21. E. Shaffer and M. Garland Efficient adaptive simplification of massive meshes, in Proceedings of the conference on Visualization’01, pp. 127–134, IEEE, Washington, 2001.

    Google Scholar 

  22. Stanford University, The Stanford 3d scanning repository, 2005, Stanford Computer Graphics Laboratory, University of Stanford, http://graphics.stanford.edu/data/3Dscanrep/.

  23. G. Turk, Re-tiling polygonal surfaces, in SIGGRAPH’92, ACM, Washington, 1992.

    Google Scholar 

  24. G. Wahba, Spline models for observational data, in CBMS-NSF, Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, PA, 1990.

    Google Scholar 

  25. H. Wendland, Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree, Adv. Comput. Math. 4 (1995), 389–396.

    Article  MATH  MathSciNet  Google Scholar 

  26. H. Wendland, Local polynomial reproduction and moving least squares approximation, IMA J. Numer. Anal. 21 (2001), 285–300.

    Article  MATH  MathSciNet  Google Scholar 

  27. H. Wendland, Scattered Data Approximation, Cambridge University Press, Cambridge, 2005.

    MATH  Google Scholar 

  28. H. Wendland and C. Rieger, Approximate interpolation with applications to selecting smoothing parameters, Numer. Math. 101 (2005), 643–662.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armin Iske.

Additional information

Communicated by Hans Munthe-Kaas.

This paper is dedicated to Arieh Iserles on the occasion of his 60th anniversary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dyn, N., Iske, A. & Wendland, H. Meshfree Thinning of 3D Point Clouds. Found Comput Math 8, 409–425 (2008). https://doi.org/10.1007/s10208-007-9008-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-007-9008-7

Keywords

AMS Subject Classifications

Navigation