Skip to main content

Advertisement

Log in

A photographic method for detailing the morphology of the floor of a dynamic crater lake: the El Chichón case (Chiapas, Mexico)

  • Research paper
  • Published:
Limnology Aims and scope Submit manuscript

Abstract

The active volcano El Chichón (Chiapas, Mexico) hosts a shallow acidic crater lake. During the period 2001–2007, 26 photographs of the crater lake were taken from the same spot at the eastern crater rim, ~160 m above the crater floor. The size of the lake was extremely variable. Using a GPS track from around the lake shore as a reference, 26 digitized lake outlines were corrected simultaneously for the perspective angle. The corrected lake outlines were superposed, leading to a “morphological map” of a large section of the lake bottom. This map provides insight into the erosive–sedimentary regime of the lake floor. The inner section of the lake is more stable due to the precipitation of sealing clays. This is probably one of the reasons why the El Chichón crater lake has never disappeared during the past 28 years. The sealing clays at the lake bottom can be considered the superficial analog of impermeable clay caps at the depths of hydrothermal systems. The photographic procedure presented here may be useful for other limnological and (volcanic) lake studies aimed at describing lake morphology, and for eventually deducing the surface area and volume of the lake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aiuppa A, D’Alessandro W, Gurrieri S, Madonia P, Parello F (2007) Hydrologic and geochemical survey of the lake “Specchio di Venere” (Pantelleria Island, Southern Italy). Environ Geol 53:903–913

    Article  CAS  Google Scholar 

  • Anzidei M, Carapezza ML, Esposito A, Giordano G, Tarchini L, Lelli M (2008) The Albano Maar lake high resolution bathymetry and dissolved CO2 budget (Colli Albani District, Italy): constraints to hazard evaluation. J Volcanol Geotherm Res 171:258–268

    Article  CAS  Google Scholar 

  • Bernard A, Escobar CD, Mazot A, Gutiérrez RE (2004) The acid volcanic lake of Santa Ana volcano, El Salvador. Geol Soc Am 375:121–133

    Google Scholar 

  • Brantley SL, Borgia A, Rowe G, Fernández JF, Reynolds JF (1987) Poás volcano crater lake acts as a condenser for acid metal-rich brine. Nature 330:470–472

    Article  CAS  Google Scholar 

  • Brown G, Rymer H, Dowden J, Kapadia P, Stevenson D, Barquero J, Morales LD (1989) Energy budget analysis for Poás crater lake: implications for predicting volcanic activity. Nature 339:370–373

    Article  Google Scholar 

  • Casadevall TJ, De la Cruz-Reyna S, Rose WI, Bagley S, Finnegan DL, Zoller WH (1984) Crater lake and post-eruption hydrothermal activity, El Chichón Volcano, Mexico. J Volcanol Geotherm Res 23:169–191

    Article  CAS  Google Scholar 

  • Caudron C, Bernard A (2010) Hydroacoustic quantifications of CO2 bubbles in volcanic lakes (abstract). In: 7th Workshop on Volcanic Lakes, CVL-IAVCEI, Costa Rica, 10–21 March 2010

  • Christenson BW (1994) Convection and stratification in Ruapehu crater lake, New Zealand: implications for Lake Nyos-type gas release eruptions. Geochem J 26:185–197

    Article  Google Scholar 

  • Christenson BW (2000) Geochemistry of fluids associated with the 1995–1996 eruption of Mt. Ruapehu, New Zealand: signatures and processes in the magmatic-hydrothermal system. J Volcanol Geotherm Res 97:1–30

    Article  CAS  Google Scholar 

  • Christenson BW, Mazot A, Britten K (2010) Gas transfer through Ruapehu crater lake: insights gained from a recent water-borne survey. AGU Fall Meeting, San Francisco, CA, USA, 13–17 December 2010, V23A-2388

  • Delmelle P, Bernard A (2000) Volcanic lakes. In: Encyclopedia of volcanoes. Academic, New York, pp 877–895

  • Galindo I, Roeder G, López JP (2008) Long term AVHRR observations of surface radiative flux from El Chichón crater lake (1996–2006). J Volcanol Geotherm Res 174:488–493

    Article  Google Scholar 

  • Giggenbach WF (1974) The chemistry of crater lake, Mt. Ruapehu (New Zealand) during and after the 1971 active period. NZ J Sci 17:33–45

  • Haberyan KA, Horn SP, Umaña GV (2003) Basic limnology of fifty-one lakes in Costa Rica. Rev Biol Trop 51:107–122

    PubMed  Google Scholar 

  • Hedenquist JW, Lowenstern JB (1994) The role of magmas in the formation of hydrothermal ore deposits. Nature 370:519–527

    Google Scholar 

  • Hedenquist JW, Reyes AG, Simmons SF, Taguchi S (1992) The thermal and geochemical structure of geothermal and epithermal systems: a framework for interpreting fluid inclusion data. Euro J Mineral 4:989–1015

    CAS  Google Scholar 

  • Hurst AW, Bibby HM, Scott BJ, McGuinness MJ (1991) The heat source of Ruapehu crater lake; deductions from the energy and mass balances. J Volcanol Geotherm Res 46:1–20

    Article  Google Scholar 

  • Inbar M, Reyes Enriquez A, Graniel Graniel JH (2001) Morphological changes and erosion processes following the 1982 eruption of El Chichón volcano, Chiapas, Mexico. Géomorphol Relief Process Environ 3:175–184

    Article  Google Scholar 

  • Jekeli C, Dumrongchai P (2003) On monitoring a vertical datum with satellite altimetry and water-level gauge data on large lakes. J Geodesy 77:447–453

    Article  Google Scholar 

  • Jutzeler M, Varley N (2008) Geophysical study of the El Chichón dome complex (Chiapas, Mexico): insights into its structure and alteration processes. In: IAVCEI General Assembly, Reykjavík, Iceland, 18–22 Aug 2008, 2-f P08

  • Jutzeler M, Varley N, Roach M (2011) Geophysical characterization of hydrothermal systems and intrusive bodies, El Chichón volcano (Mexico). J Geophys Res (in press)

  • Madonia P, Naselli-Flores L, Parello F, Parlatos B, Viola A (2006) Geological development of a gypsum lake formed at the beginning of the 20th century in central Sicily, Italy: integration of historical data with modern survey techniques. Chem Ecol 22:333–347

    Article  CAS  Google Scholar 

  • Martini M, Giannini L, Prati F, Tassi F, Capaccioni B, Bozzelli P (1994) Chemical characters of crater lakes in the Azores and Italy: the anomaly of Lake Albano. Geochem J 26:173–184

    Article  Google Scholar 

  • Mazot A (2005) Activité hydrothermale des volcans Kelud et Papandayan (Indonésie) et évaluation des flux de gaz carbonique (Ph.D. thesis). Université Libre de Bruxelles, Belgium

  • Mazot A, Solikhin A (2008) Evolution du flux de gaz carbonique du lac de cratère du KELUD de 2001 jusqu’à l’éruption de 2007. Liaison Amateurs Volcanol Eur 130:24–31

    Google Scholar 

  • Mills HH (1992) Post-eruption erosion and deposition in the 1980 crater of Mount St Helens, Washington, determined from digital maps. Earth Surf Process Landforms 17:739–754

    Article  Google Scholar 

  • Miyabuchi Y, Terada A (2009) Subaqueous geothermal activity revealed by lacustrine sediments of the acidic Nakadake crater lake, Aso Volcano, Japan. J Volcanol Geotherm Res 187:140–145. doi:10.1016/j.jvolgeores.2009.08.001

    Article  CAS  Google Scholar 

  • Mora R (2005) Informe de la actividad de la Cordillera Volcánica Central, Enero 2003–Junio 2004 (internal report). RSN, Costa Rica, pp 1–56

  • Morris CS, Gill SK (1994) Evaluation of the TOPEX/POSEIDON altimeter system over the Great Lakes. J Geophys Res 99:24527–24539

    Article  Google Scholar 

  • Obanawa H, Matsukura Y (2008) Cliff retreat and talus development at the caldera wall of Mount Saint Helens: computer simulation using a mathematical model. Geomorphology 97:697–711

    Article  Google Scholar 

  • Ohba T, Hirabayashi J, Nogami K (1994) Water, heat and chlorine budgets of the crater lake, Yugama at Kusatsu-Shirane volcano, Japan. Geochem J 26:217–231

    Article  Google Scholar 

  • Ohba T, Hirabayashi J, Nogami K (2000) D/H and 18O/16O ratios of water in the crater lake at Kusatsu-Shirane volcano, Japan. J Volcanol Geotherm Res 97:329–346

    Article  CAS  Google Scholar 

  • Ohsawa S, Saito T, Yoshikawa S, Mawatari H, Yamada M, Amita K, Takamatsi N, Sudo Y, Kagiyama T (2010) Color change of lake water at the active crater lake of Aso volcano, Yudamari, Japan: is it in response to change in water quality induced by volcanic activity? Limnology. doi:10.1007/s10201-009-0304-6

  • Oppenheimer C (1997) Ramifications of the skin effect for crater lake heat budget analysis. J Volcanol Geotherm Res 75:159–165

    Article  CAS  Google Scholar 

  • Rouwet D, Taran Y, Varley N (2004) Dynamics and mass balance of El Chichón crater lake, Mexico. Geofís Int 43:427–434

    Google Scholar 

  • Rouwet D, Taran Y, Inguaggiato S, Varley N, Santiago SJA (2008) Hydrochemical dynamics of the “lake-spring” system in the crater of El Chichón volcano (Chiapas, Mexico). J Volcanol Geotherm Res 178:237–248

    Article  CAS  Google Scholar 

  • Rouwet D, Bellomo S, Brusca L, Inguaggiato S, Jutzeler M, Mora R, Mazot A, Bernard R, Cassidy M, Taran Y (2009) Major and trace element geochemistry of El Chichón volcano-hydrothermal system (Chiapas, Mexico) in 2006–2007: implications for future geochemical monitoring. Geofís Int 48:55–72

    CAS  Google Scholar 

  • Takano B (1987) Correlation of volcanic activity with sulfur oxyanion speciation in a crater lake. Science 235:1633–1635

    Article  PubMed  CAS  Google Scholar 

  • Takano B, Suzuki K, Sugimori K, Ohba T, Fazlullin SM, Bernard A, Sumarti S, Sukhyar R, Hirabayashi M (2004) Bathymetric and geochemical investigation of Kawah Ijen crater lake, East Java, Indonesia. J Volcanol Geotherm Res 135:299–329

    Article  CAS  Google Scholar 

  • Taran Y, Rouwet D (2007) Energy-budget and mass balance estimations of the thermal input to El Chichón crater lake, Mexico. Water–Rock Interact 12:947–951

    Google Scholar 

  • Taran Y, Rouwet D (2008) Estimating thermal inflow to El Chichón crater lake using the chemical and isotope balance approach. J Volcanol Geotherm Res 175:472–481

    Article  CAS  Google Scholar 

  • Taran Y, Varley N (1999) New data about El Chichón crater lake. IAVCEI General Assembly, Jakarta

    Google Scholar 

  • Taran YA, Fischer TP, Pokrovsky B, Sano Y, Armienta MA, Macías JL (1998) Geochemistry of the volcano-hydrothermal system of El Chichón Volcano, Chiapas, Mexico. Bull Volcanol 60:436–449

    Article  Google Scholar 

  • Tassi F, Vaselli O, Fernández E, Duarte E, Martínez M, Delgado-Huertas A, Bergamaschi F (2009) Morphological and geochemical features of crater lakes in Costa Rica: an overview. J Limnol 68:193–205

    Google Scholar 

  • Trunk L, Bernard A (2008) Investigating crater lake warming using ASTER thermal imagery: case studies at Ruapehu, Poás, Kawah Ijen, and Copahué volcanoes. J Volcanol Geotherm Res 178:259–270

    Google Scholar 

  • Varekamp JC (2003) Lake contamination models for evolution towards steady state. J Limnol 62:67–72

    Google Scholar 

  • Varekamp JC, Pasternack GB, Rowe GL (2000) Volcanic lake systematics II. Chemical constraints. J Volcanol Geotherm Res 97:161–179

    Article  CAS  Google Scholar 

  • Zlotnicki J, Sasai Y, Toutain JP, Villacorte EU, Bernard A, Sabit JP, Gordon JM Jr, Corpuz EG, Harada M, Punongbayan JT, Hase H, Nagao T (2008) Combined electromagnetic, geochemical and thermal surveys of Taal volcano (Philippines) during the period 2005–2006. Bull Volcanol 71:29–47

    Article  Google Scholar 

Download references

Acknowledgments

The author wishes to thank the reviewers and the editor for insightful revision of the manuscript. The author is indebted to K. Freeland, Y. Taran, T. Scolamacchia, J.C. Mora, M. Jutzeler, N. Varley, A. Mazot and L. Serrano for additional photographs, and is grateful to Y. Taran, M. Jutzeler, P. Madonia, J.C. Varekamp, and G. Chiodini for nourishing comments on the early version of this manuscript. Financial support for D.R. during the period 2006–2007 came from Belgische Stichting Roeping.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitri Rouwet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rouwet, D. A photographic method for detailing the morphology of the floor of a dynamic crater lake: the El Chichón case (Chiapas, Mexico). Limnology 12, 225–233 (2011). https://doi.org/10.1007/s10201-011-0343-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10201-011-0343-7

Keywords

Navigation