Skip to main content

Advertisement

Log in

Species diversity and functional assessment of macroinvertebrate communities in Austrian rivers

  • Research Paper
  • Published:
Limnology Aims and scope Submit manuscript

Abstract

We applied an extensive data set from 211 locations along Austrian rivers to assess community structure and the ratios of functional feeding groups of benthic macroinvertebrates. A total of 569 taxa have been identified. At the catchment scale, the Enns, Salzach, and Traun Rivers exhibited the highest taxa richness whereas the Inn River showed the lowest richness. Beta-diversity was highest along the impounded and fragmented Enns and Drau Rivers. Consequently, high corridor diversity corresponded to a low degree of nestedness. Overall, scrapers and gathering-collectors dominated the benthic community. Further, the relationship between habitat conditions and metrics based on functional feeding groups were statistically analyzed to validate the potential of these metrics as indicators of ecosystem attributes. We examined four major ecosystem attributes: species diversity, material cycling, longitudinal material transport, and lateral material input. Multiple regression analyses for midorder rivers demonstrated that metrics were significantly related to habitat conditions. For example, the metric set indicating primary production was positively correlated with periphyton cover, dissolved oxygen, dominant sediment size, and average annual discharge. Overall, most metrics exhibited unique responses to habitat conditions, implying that they are useful proxies of ecosystem attributes. Thus, a function-based approach based on macroinvertebrates has the potential to become an effective tool for the assessment of river ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armitage PD, Moss D, Wright JF, Furse MT (1983) The performance of a new biological water quality score system based on macroinvertebrates over a wide range of unpolluted running-water sites. Water Res 17:333–347

    Article  CAS  Google Scholar 

  • Atmar W, Patterson BD (1993) The measure of order and disorder in the distribution of species in fragmented habitat. Oecologia (Berl) 96:373–382

    Article  Google Scholar 

  • Aubrecht G, Dick G, Prentice C (1993) Monitoring of ecological change in wetlands of middle Europe. In: Proceedings of an international workshop in Linz, Austria, 26–30 October, pp 137–150

  • Barbour MT, Gerristen J, Snyder BD, Stribling JB (2001) Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates, and fish. Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Battin TJ, Kaplan LA, Newbold JD, Hansen CME (2003) Contributions of microbial biofilms to ecosystem processes in stream mesocosms. Nature (Lond) 426:439–442

    Article  CAS  Google Scholar 

  • Bauernfeind E, Moog O (2000) Mayflies (Insecta: Ephemeroptera) and the assessment of ecological integrity: a methodological approach. Hydrobiologia 422/423:71–83

    Article  Google Scholar 

  • Bayerisches Landesamt für Wasserwirtschaft (1996) Ökologische Typisierung der aquatischen Makrofauna. Bayerisches Landesamt für Wasserwirtschaft, Munich

    Google Scholar 

  • Boecklen WJ (1997) Nestedness, biogeographic theory, and the design of nature reserves. Oecologia (Berl) 112:123–142

    Article  Google Scholar 

  • Bundesministerium für Land-und Forstwirtschaft, Umwelt und Wasserwirtschaft (1997) Maps on biological monitoring. In: Wassergüte in Östereich Jahresbericht 1996. Medieninhaber und Herausgeber, Vienna

    Google Scholar 

  • Bundesministerium für Land-und Forstwirtschaft, Umwelt und Wasserwirtschaft (1998) Ausweisung Flusstypspezifisch Erhaltener Fliessgewässerabschitte in Österreich. Bundesministerium für Landund Fortwirtschaft Wasserwirtschaftskataster, Vienna

    Google Scholar 

  • Chovanec A, Vogel WR, Winkler G (1996) Aspects of water pollution control of Austrian rivers. Arch Hydrobiol Suppl 113(Large Rivers 10):381–388

    CAS  Google Scholar 

  • Cummins KW, Klug MJ (1979) Feeding ecology of stream invertebrates. Annu Rev Ecol Syst 10:147–172

    Article  Google Scholar 

  • Cummins KW, Wilzbach MA, Gates DM, Peery JB, Taliaferro WB (1989) Shredders and riparian vegetation. BioScience 39:24–30

    Article  Google Scholar 

  • Dobson M, Hildrew AG (1992) A test of resource limitation among shredding detritivores in low order streams in southern England. J Anim Ecol 61:69–77

    Article  Google Scholar 

  • Evans-White MA, Lamberti GA (2005) Grazer species effects on epilithon nutrient composition. Freshw Biol 50:1853–1863

    Article  CAS  Google Scholar 

  • Federal Environment Agency of Austria (2002) Water. In: State of the environment in Austria, Vienna. Federal Environment Agency of Austria, Vienna, pp 43–55

    Google Scholar 

  • Findlay SEG, Kiviat E, Nieder WC, Blair EA (2002) Functional assessment of a reference wetland set as a tool for science, management and restoration. Aquat Sci 64:107–117

    Article  Google Scholar 

  • Fukushima S, Kanada S (1999) Effects of chlorine on periphytic algae and macroinvertebrates in a stream receiving treated sewage as maintenance water. Jpn J Limnol 60:569–583

    Google Scholar 

  • Gayraud S, Statzner B, Bady P, Haybachp A, Schöll F, Usseglio-Polatera P, Bacchi M (2003) Invertebrate traits for the biomonitoring of large European rivers: an initial assessment of alternative metrics. Freshw Biol 48:2045–2064

    Article  Google Scholar 

  • Graça MAS, Cressa C, Gessner MO, Feio MJ, Callies KA, Barrios CC (2001) Food quality, feeding preferences, survival and growth of shredders from temperate and tropical streams. Freshw Biol 46:947–957

    Article  Google Scholar 

  • Grubaugh JW, Wallace JB, Houston ES (1996) Longitudinal changes of macroinvertebrate communities along an Appalachian stream continuum. Can J Fish Aquat Sci 53:896–909

    Article  Google Scholar 

  • Hawkins CP, Sedell JR (1981) Longitudinal and seasonal changes in functional organization of macroinvertebrate communities in four Oregon streams. Ecology 62:387–397

    Article  Google Scholar 

  • Hawkins CP, Murphy ML, Anderson NH (1982) Effects of canopy, substrate composition, and gradients on structure of macroinvertebrate communities in Cascade Range streams of Oregon. Ecology 62:387–397

    Article  Google Scholar 

  • Heltshe JF, Forrester NE (1983) Estimating species richness using the Jackknife procedure. Biometrics 39:1–11

    Article  PubMed  CAS  Google Scholar 

  • Hieber M, Gessner MO (2002) Contribution of stream detrivores, fungi, and bacteria to leaf breakdown based on biomass estimates. Ecology 83:1026–1038

    Google Scholar 

  • Hurd MK, Perry SA, Perry WB (1996) Nontarget effects of a test application of diflubenzuron to the forest canopy on stream macroinvertebrates. Environ Toxicol Chem 15:1344–1351

    Article  Google Scholar 

  • Karr JR, Dudley DR (1981) Ecological perspectives on water quality goals. Environ Manag 5:55–68

    Article  Google Scholar 

  • Kerans BL, Karr JR (1994) A benthic index of biotic integrity (B-IBI) for rivers of the Tennessee Valley. Ecol Appl 4:768–785

    Google Scholar 

  • Kerr JT, Sugar A, Packer L (2000) Indicator taxa, rapid biodiversity assessment, and nestedness in an endangered ecosystem. Conserv Biol 14:1726–1734

    Article  Google Scholar 

  • Koller-Kreimel V, Tomek H (1999) Gewässerschutzbericht 1999. Bundesministerium für Land-und Forstwirtschaft, Vienna

    Google Scholar 

  • Krebs CJ (1999) Species diversity measures. In: Ecological methodology. Addison Wesley Longman, Menlo Park, pp 410–454

    Google Scholar 

  • Lakly MB, McArthur JV (2000) Macroinvertebrate recovery of a post-thermal stream: habitat structure and biotic function. Ecol Eng 15:S87–S100

    Article  Google Scholar 

  • Lawson DL, Klug MJ, Merritt RW (1984) The influence of physical, chemical, and microbiological characteristics of decomposing leaves on the growth of the detritivore Tipila abdominalis (Diptera: Tipilidae). Can J Zool 62:2339–2343

    Article  Google Scholar 

  • Lorenz A, Hering D, Feld CK, Rolauffs P (2004) A new method for assessing the impact of hydromorphological degradation on the macroinvertebrate fauna of five German stream types. Hydrobiologia 516:107–127

    Article  Google Scholar 

  • Malmqvist B, Rundle S (2002) Threats to the running water ecosystems of the world Environ Conserv 29:134–153

    Article  Google Scholar 

  • Merritt RW, Higgins MJ, Cummins KW, Vandeneeden B (1999) The Kissimmee River-Riparian Marsh Ecosystem, Florida. Seasonal differences in invertebrate functional feeding group relationship. In: Batzer DP, Rader R, Wissinger SA (eds) Invertebrates in freshwater wetlands of North America: ecology and management. Wiley, New York, pp 55–79

    Google Scholar 

  • Meyer JL, McDowell WH, Bott TL, Elwood JW, Ishizaki C, Melack JM, Peckarsky BL, Peterson BJ, Rublee PA (1988) Elemental dynamics in streams. J North Am Benthol Soc 7:410–432

    Article  Google Scholar 

  • Minshall GW, Brock JT, Lapoint TW (1982) Characterization and dynamics of benthic organic matter and invertebrate functional feeding group relationships in the Upper Salmon River, Idaho (USA). Int Rev Gesamten Hydrobiol 67:793–820

    Google Scholar 

  • Moog O (ed) (1995) Fauna Aquatica Austriaca. Bundesministerium für Land-und Forstwirtschaft, Vienna

    Google Scholar 

  • Moog O, Nesemann H, Ofenböck T (2001a) Österreichs Anteil an denösterreichischen Ökoregionen gemäß EU-Wasserrahmenrichtlinie — eine deduktive Analyse landschaftsprägender Milieufaktoren. Österr Wasser-und Abfallwirtschaft 52:204–209

    Google Scholar 

  • Moog O, Schmidt-Kloiber A, Ofenböck T, Gerritsen J (2001b) Aquatische Ökoregionen und Bioregionen Österreichs — eine Gliederung nach geoökologischen Milieufaktoren und Makrozoobenthos-Zönosen. Bundesministerium für Land-und Forstwirtschaft, Umwelt und Wasserwirtschaft, Vienna. www.lebensministerium.at/Wasser/Wasserrahmenrichtlinie [www document]

    Google Scholar 

  • Muhar S, Schwarz M, Schmutz S, Jungwirth M (2000) Identification of rivers with high and good habitat quality: methodological approach and applications in Austria. Hydrobiologia 422/423:343–358

    Article  Google Scholar 

  • Newbold JD, O’Neill RV, Elwood JW, Van Winkle W (1982) Nutrient spiralling in streams: implications for nutrient limitation and invertebrate activity. Am Nat 120:628–652

    Article  Google Scholar 

  • Newman RM, Perry JA, Tam E, Crawford R (1987) Effects of chronic chlorine exposure on litter processing in outdoor experimental streams. Freshw Biol 18:415–428

    Article  CAS  Google Scholar 

  • Ofenböck T, Moog O, Car M (2002) Do the Austrian blackfly fauna (Diptera: Simuliidae) support the typological approach of the EU water framework directive? Limnologica 32:255–272

    Google Scholar 

  • Parker CR, Voshell JR (1983) Production of filter-feeding Trichoptera in an impounded and free flowing river. Can J Zool 61:70–87

    Article  Google Scholar 

  • Patterson BD, Atmar W (1986) Nested subsets and the structure of insular mammalian faunas and archipelagoes. Biol J Linn Soc 28:65–82

    Google Scholar 

  • Rawer-Jost C, Böhmer J, Blank J, Rahmann H (2000) Macroinvertebrate functional feeding group methods in ecological assessment. Hydrobiologia 422/423:225–232

    Article  Google Scholar 

  • Resh VH (1994) Variability, accuracy and taxonomic cost of rapid assessment approaches in benthic macroinvertebrate biomonitoring. Boll Zool 61:375–383

    Google Scholar 

  • Rezanka KM, Hershey AE (2003) Examining primary producer-consumer interactions in a Lake Superior tributary using 15N-tracer, grazer-reduction, and nutrient-bioassay experiments. J North Am Benthol Soc 22:371–387

    Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Richardson JS (1993) Limits to productivity in streams: evidence from studies of macroinvertebrates. Can Spec Publ Fish Aquat Sci 118:9–15

    Google Scholar 

  • Ricklefs RE (1990) Regulation of community structure. In: Ricklefs RE (ed) Ecology. Freeman, New York, pp 748–775

    Google Scholar 

  • Sorenson T (1948) A method of establishing groups of equal amplitude in plant sociology based on similarity of species content. K Dan Vidensk Selsk Biol Skr 5:1–34

    Google Scholar 

  • Soucek DJ, Schmidt TS, Cherry DS (2001) In situ studies with Asian clams (Corbicula fluminea) detect acid mine drainage and nutrient inputs in low-order streams. Can J Fish Aquat Sci 58:602–608

    Article  CAS  Google Scholar 

  • Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE (1980) The river continuum concept. Can J Fish Aquat Sci 37:130–137

    Article  Google Scholar 

  • Wallace JB, Anderson NH (1996) Habitat, life history, and behavioural adaptations of aquatic insects. In: Merritt RW, Cummins KW (eds) An introduction to the aquatic insects of North America. Kendall/Hunt, Dubuque, pp 41–73

    Google Scholar 

  • Wallace JB, Webster JR (1996) The role of macroinvertebrates in stream ecosystem function. Annu Rev Entomol 41:115–139

    Article  PubMed  CAS  Google Scholar 

  • Wallace JB, Webster JR, Woodall WR (1977) The role of filter-feedings in flowing waters. Arch Hydrobiol 79:506–532

    Google Scholar 

  • Ward JV, Tockner K (2001) Biodiversity: towards a unifying theme for river ecology. Freshw Biol 46:807–819

    Article  Google Scholar 

  • Wimmer R, Moog O (1994) Katalog der Ordnungszahlen österreichischer Fließgewässer. Monographien Bd. 51. Umweltbundesamt, Vienna

    Google Scholar 

  • Wimmer RA, Chovanec A, Moog O, Fink MH, Gruber D (2000) Abiotic stream classification as a basis for a surveillance monitoring network in Austria in aAccordance with the EU Water Framework Directive. Acta Hydrochim Hydrobiol 28:177–184

    Article  CAS  Google Scholar 

  • World Resources Institute (2001) Part 2: Taking stock of ecosystem. In: World Resources Institute (ed) World Resources 2000–2001. Elsevier, Washington, DC, pp 43–145

    Google Scholar 

  • Wotton RS (1987) Lake outlet black flies — the dynamics of filter feeders at very high population densities. Holarct Ecol 10:65–72

    Google Scholar 

  • Wright JF (2000) An introduction to RIVPACS. In: Assessing the biological quality of fresh waters RIVPACS and other techniques. Freshwater Biological Association, Ambleside, pp 1–24

    Google Scholar 

  • Wright DH, Reeves JH (1992) On the meaning and measurement of nestedness of species assemblages. Oecologia (Berl) 92:416–428

    Article  Google Scholar 

  • Zelinka M, Marvan P (1961) Zur Präzisierung der biologische Klassifikation der Reinheit fliessender Gewässer. Arch Hydrobiol 57:389–407

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chihiro Yoshimura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshimura, C., Tockner, K., Omura, T. et al. Species diversity and functional assessment of macroinvertebrate communities in Austrian rivers. Limnology 7, 63–74 (2006). https://doi.org/10.1007/s10201-006-0170-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10201-006-0170-4

Key words

Navigation