Skip to main content

Advertisement

Log in

Internal validation of models with several interventions

  • Original Paper
  • Published:
The European Journal of Health Economics Aims and scope Submit manuscript

Abstract

In cost-effectiveness analyses, models are used typically to synthesize the best available data and/or extrapolate beyond clinical trial data. Ideally, models should be validated both internally and externally. The purpose of this paper is to suggest a test for internal validation of models where several interventions for the same clinical indication are compared. To the best of our knowledge, such a specific test does not yet exist. There are four versions of the test, which consider the relationship between incremental downstream costs and effects in the case of a single or several endpoints. We apply two versions of the validation test to published cost-effectiveness analyses of physical activity programs and demonstrate internal validity of the model in one study and lack of internal validity of the model in the other study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Treatment of SEs can include interventions such as emergency surgery after failed coronary angioplasty.

  2. Alternatively, we can consider an intermediate endpoint in the denominator.

  3. This is the expected age of death used for calculating life years or DALYs lost.

  4. Due to missing data we assumed that incremental costs and effects were not correlated, which overestimates the variance in cost-effectiveness and thus lowers the probability of detecting a significant difference.

References

  1. Ainsworth, B.E., Haskell, W.L., Whitt, M.C., Irwin, M.L., Swartz, A.M., Strath, S.J., O’Brien, W.L., Bassett Jr, D.R., Schmitz, K.H., Emplaincourt, P.O., Jacobs Jr, D.R., Leon, A.S.: Compendium of physical activities: an update of activity codes and MET intensities. Med. Sci. Sports Exerc. 32(9 Suppl), S498–S504 (2000)

    Article  PubMed  CAS  Google Scholar 

  2. Airoldi, M., Morton, A.: Adjusting life for quality or disability: stylistic difference or substantial dispute? Health Econ. 18(11), 1237–1247 (2009)

    Article  PubMed  Google Scholar 

  3. Birch, S., Gafni, A.: Cost effectiveness/utility analyses. Do current decision rules lead us to where we want to be? J. Health Econ. 11(3), 279–296 (1992)

    Article  PubMed  CAS  Google Scholar 

  4. Birch, S., Gafni, A.: Changing the problem to fit the solution: Johannesson and Weinstein’s (mis) application of economics to real world problems. J. Health Econ. 12(4), 469–476 (1993)

    Article  PubMed  CAS  Google Scholar 

  5. Buxton, M.J., Drummond, M.F., Van Hout, B.A., Prince, R.L., Sheldon, T.A., Szucs, T., Vray, M.: Modelling in economic evaluation: an unavoidable fact of life. Health Econ. 6(3), 217–227 (1997)

    Article  PubMed  CAS  Google Scholar 

  6. Chilcott, J., Tappenden, P., Rawdin, A., Johnson, M., Kaltenthaler, E., Paisley, S., Papaioannou, D., Shippam, A.: Avoiding and identifying errors in health technology assessment models: qualitative study and methodological review. Health Technol. Assess. 14(25). (2010)

  7. Cobiac, L.J., Vos, T., Barendregt, J.J.: Cost-effectiveness of interventions to promote physical activity: a modelling study. PLoS Med. 6(7), e1000110 (2009)

    Article  PubMed  Google Scholar 

  8. Cromwell, J., Bartosch, W.J., Fiore, M.C., Hasselblad, V., Baker, T.: Cost-effectiveness of the clinical practice recommendations in the AHCPR guideline for smoking cessation. Agency for Health Care Policy and Research. JAMA 278(21), 1759–1766 (1997)

    Article  PubMed  CAS  Google Scholar 

  9. Garber, A.M., Solomon, N.A.: Cost-effectiveness of alternative test strategies for the diagnosis of coronary artery disease. Ann. Intern. Med. 130(9), 719–728 (1999)

    Article  PubMed  CAS  Google Scholar 

  10. Goldie, S.J., Kuhn, L., Denny, L., Pollack, A., Wright, T.C.: Policy analysis of cervical cancer screening strategies in low-resource settings: clinical benefits and cost-effectiveness. JAMA 285(24), 3107–3115 (2001)

    Article  PubMed  CAS  Google Scholar 

  11. Gray, A.M., Clarke, P.M., Wolstenholme, J., Wordsworth, S. (eds.): Applied Methods of Cost-Effectiveness Analysis in Healthcare: Handbooks in Health Economic Evaluation Series, vol. 3. Oxford University Press, Oxford (2010)

    Google Scholar 

  12. Herman, W.H., Hoerger, T.J., Brandle, M., Hicks, K., Sorensen, S., Zhang, P., Hamman, R.F., Ackermann, R.T., Engelgau, M.M.: Diabetes prevention program research group. The cost-effectiveness of lifestyle modification or metformin in preventing type 2 diabetes in adults with impaired glucose tolerance. Ann. Intern. Med. 142(5), 323–332 (2005)

    Article  PubMed  Google Scholar 

  13. Holtgrave, D.R., Qualls, N.L.: Threshold analysis and programs for prevention of HIV infection. Med. Decis. Making 15(4), 311–317 (1995)

    Article  PubMed  CAS  Google Scholar 

  14. Howard, P., Knight, C., Boler, A., Baker, C.: Cost-utility analysis of varenicline versus existing smoking cessation strategies using the BENESCO Simulation model: application to a population of US adult smokers. Pharmacoeconomics 26(6), 497–511 (2008)

    Article  PubMed  CAS  Google Scholar 

  15. Luce, B.R., Manning, W.G., Siegel, J.E., Lipscomb, J.: Estimating costs in cost-effectiveness analysis. In: Gold, M.R., Siegel, J.E., Russell, L.B., Weinstein, M.C. (eds.) Cost-Effectiveness in Health and Medicine. Oxford University Press, New York (1996)

    Google Scholar 

  16. O’Brien, B., Levine, M., Willan, A., Goeree, R., Haley, S., Blackhouse, G., Gent, M.: Economic evaluation of outpatient treatment with low-molecular-weight heparin for proximal vein thrombosis. Arch. Intern. Med. 159(19), 2298–2304 (1999)

    Article  PubMed  Google Scholar 

  17. Philips, Z., Ginnelly, L., Sculpher, M., Claxton, K., Golder, S., Riemsma, R., Woolacoot, N., Glanville, J.: Review of guidelines for good practice in decision-analytic modelling in health technology assessment. Health Technol. Assess. 8(36), iii–iv, ix–xi, 1–158 (2004)

    Google Scholar 

  18. Pinkerton, S.D., Holtgrave, D.R., DiFranceisco, W., Semaan, S., Coyle, S.L., Johnson-Masotti, A.P.: Cost-threshold analyses of the National AIDS Demonstration Research HIV prevention interventions. AIDS 14(9), 1257–1268 (2000)

    Article  PubMed  CAS  Google Scholar 

  19. Roux, L., Pratt, M., Tengs, T.O., Yore, M.M., Yanagawa, T.L., Van Den Bos, J., Rutt, C., Brownson, R.C., Powell, K.E., Heath, G., Kohl 3rd, H.W., Teutsch, S., Cawley, J., Lee, I.M., West, L., Buchner, D.M.: Cost effectiveness of community-based physical activity interventions. Am. J. Prev. Med. 35(6), 578–588 (2008)

    Article  PubMed  Google Scholar 

  20. Sendi, P.P., Craig, B.A., Pfluger, D., Gafni, A., Bucher, H.C.: Systematic validation of disease models for pharmacoeconomic evaluations. Swiss HIV Cohort Study. J. Eval. Clin. Pract. 5(3), 283–395 (1999)

    Article  PubMed  CAS  Google Scholar 

  21. Weinstein, M.C., Zeckhauser, R.: Critical ratios and efficient allocation. J. Public Econ. 2, 147–157 (1973)

    Article  Google Scholar 

  22. Weinstein, M.C., O’Brien, B., Hornberger, J., Jackson, J., Johannesson, M., McCabe, C.: ISPOR Task Force on Good Research Practices–Modeling Studies. Principles of good practice for decision analytic modeling in health-care evaluation: report of the ISPOR Task Force on Good Research Practices–Modeling Studies. Value Health. 6(1), 9–17 (2003)

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

There are no potential conflicts of interest. The authors did not receive funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afschin Gandjour.

Appendix

Appendix

Proof of version 3

Consider four interventions A, B, C, and D, which are compared in the short term in terms of the ratio of incremental downstream costs to incremental downstream effects:

$$ \begin{gathered} \frac{{\sum\nolimits_{i = 1}^{m} {\Updelta {\text{CE}}_{{D\;{\text{vs}} .\;C, \, i \, }} \times (1 - \alpha_{{{\text{death}},i}} ) \times C_{{{\text{CE}}, \, i}} } + \sum\nolimits_{i = 1}^{m} {\Updelta {\text{CE}}_{{D\;{\text{vs}} .\;C, \, i}} \times \alpha_{i} \times C_{{{\text{survival}}, \, i}} } }}{{\sum\nolimits_{i = 1}^{m} {\Updelta {\text{CE}}_{{D{\text{ vs}} . { }C, \, i \, }} \times w_{i} } }} + \theta = \frac{{\sum\nolimits_{i = 1}^{m} {\Updelta \text{CE}_{{C\;{\text{vs}} .\;B, \, i \, }} \times (1 - \alpha_{{{\text{death}},i}} ) \times C_{{{\text{CE}}, \, i}} } + \sum\nolimits_{i = 1}^{m} {\Updelta {\text{CE}}_{{C\;{\text{vs}} .\;B, \, i \, }} \times \alpha_{i} \times C_{{{\text{survival}}, \, i}} } }}{{\sum\nolimits_{i = 1}^{m} {\Updelta {\text{CE}}_{{C\;{\text{vs}} .\;B, \, i \, }} \times w_{i} } }} + \vartheta = \frac{{\sum\nolimits_{i = 1}^{m} {\Updelta {\text{CE}}_{{B\;{\text{vs}} .\;A, \, i \, }} \times (1 - \alpha_{{{\text{death}},i}} ) \times C_{{{\text{CE}}, \, i}} } + \sum\nolimits_{i = 1}^{m} {\Updelta {\text{CE}}_{{B\;{\text{vs}} .\;A, \, i \, }} \times \alpha_{i} \times C_{{{\text{survival}}, \, i}} } }}{{\sum\nolimits_{i = 1}^{m} {\Updelta {\text{CE}}_{{B\;{\text{vs}} .\;A, \, i \, }} \times w_{i} } }} \end{gathered} $$
(9)

where \( \theta \) and \( \vartheta \) are two constants used to equalize the ratios of incremental downstream costs to incremental downstream effects. The ratios for the different interventions are not the same unless clinical events do not differ in terms of costs and severity.

When all interventions prevent death by preventing clinical events over the period of effectiveness (condition 2), the resulting costs of survival until the next period are the same for each clinical event prevented, i.e., \( C_{\text{survival}} \) is identical for all interventions. Hence, the ratio of life extension costs to the weighted-average effect is the same for all interventions and thus can be denoted by a constant (\( K_{3} \)):

$$ \begin{gathered} \frac{{\sum\nolimits_{i = 1}^{m} {\Updelta {\text{CE}}_{{D\;{\text{vs}} .\;C, \, i \, }} \times (1 - \alpha_{{{\text{death}},i}} ) \times C_{{{\text{CE}}, \, i}} } }}{{\sum\nolimits_{i = 1}^{m} {\Updelta {\text{CE}}_{{D\;{\text{vs}} .\;C, \, i \, }} \times w_{i} } }} + K_{3} + \theta \hfill \\ = \frac{{\sum\nolimits_{i = 1}^{m} {\Updelta {\text{CE}}_{{C{\text{ vs}} . { }B, \, i \, }} \times (1 - \alpha_{{{\text{death}},i}} ) \times C_{{{\text{CE}}, \, i}} } }}{{\sum\nolimits_{i = 1}^{m} {\Updelta {\text{CE}}_{{C\;{\text{vs}} .\;B, \, i \, }} \times w_{i} } }} + K_{3} + \vartheta \hfill \\ = \frac{{\sum\nolimits_{i = 1}^{m} {\Updelta {\text{CE}}_{{B\;{\text{vs}} .\;A, \, i \, }} \times (1 - \alpha_{{{\text{death}},i}} ) \times C_{{{\text{CE}}, \, i}} } }}{{\sum\nolimits_{i = 1}^{m} {\Updelta {\text{CE}}_{{B\;{\text{vs}} .\;A, \, i \, }} \times w_{i} } }} + K_{3} \hfill \\ \end{gathered} $$
(10)

Deleting \( K_{3} \) and considering that the number of CEs avoided is a function of incidence (Inc) and relative risk reduction (RRR) yields:

$$ \begin{gathered} \frac{{\sum\nolimits_{i = 1}^{m} {{\text{Inc}}_{i} \times {\text{RRR}}_{{i, \, D{\text{ vs}} . { }C}} \times (1 - \alpha_{{{\text{death}},i}} ) \times C_{{{\text{CE}}, \, i}} } }}{{\sum\nolimits_{i = 1}^{m} {{\text{Inc}}_{i} \times {\text{RRR}}_{{i, \, D{\text{ vs}} . { }C}} \times w_{i} } }} + \theta \hfill \\ = \frac{{\sum\nolimits_{i = 1}^{m} {{\text{Inc}}_{i} \times {\text{RRR}}_{{i, \, C{\text{ vs}} . { }B}} \times (1 \, - \, \alpha_{{{\text{death}},i}} ) \times C_{{{\text{CE}}, \, i}} } }}{{\sum\nolimits_{i = 1}^{m} {{\text{Inc}}_{i} \times {\text{RRR}}_{{i, \, C{\text{ vs}} . { }B}} \times w_{i} } }} + \vartheta \hfill \\ = \frac{{\sum\nolimits_{i = 1}^{m} {{\text{Inc}}_{i} \times {\text{RRR}}_{{i, \, B{\text{ vs}} . { }A}} \times (1 \, - \, \alpha_{{{\text{death}},i}} ) \times C_{{{\text{CE}}, \, i}} } }}{{\sum\nolimits_{i = 1}^{m} {{\text{Inc}}_{i} \times {\text{RRR}}_{{i, \, B{\text{ vs}} . { }A}} \times w_{i} } }} \hfill \\ \end{gathered} $$
(11)

When determining the relative change in cost-effectiveness beyond the trial period over the time horizon k we need to consider the relative change in incidence, death rate, and costs of clinical events:

$$ \begin{gathered} \frac{{\coprod\nolimits_{n = 1}^{k} {\left( {1 + \Updelta {\text{Inc}}_{{t_{n} - t_{n - 1} }} } \right) \times \left( {1 - \Updelta \alpha_{{t_{n} - t_{n - 1} }} } \right) \times \left( {1 + \Updelta C_{{{\text{CE}}, \, t_{n} - t_{n - 1} }} } \right)} \times \sum\nolimits_{i = 1}^{m} {{\text{Inc}}_{i} \times {\text{RRR}}_{{i, \, D\;{\text{vs}} .\;C}} \times (1 \, - \, \alpha_{{{\text{death}},i}} ) \times C_{{{\text{CE}}, \, i}} } }}{{\coprod\nolimits_{n = 1}^{k} {\left( {1 + \Updelta {\text{Inc}}_{{t_{n} - t_{n - 1} }} } \right)} \times \sum\nolimits_{i = 1}^{m} {{\text{Inc}}_{i} \times {\text{RRR}}_{{i, \, D\;{\text{vs}} .\;C}} \times w_{i} } }} + \frac{{\coprod\nolimits_{n = 1}^{k} {\left( {1 + \Updelta {\text{Inc}}_{{t_{n} - t_{n - 1} }} } \right) \times \left( {1 - \Updelta \alpha_{{t_{n} - t_{n - 1} }} } \right) \times \left( {1 + \Updelta C_{{{\text{CE}}, \, t_{n} - t_{n - 1} }} } \right)} \times \theta }}{{\coprod\nolimits_{n = 1}^{k} {\left( {1 + \Updelta Inc_{{t_{n} - t_{n - 1} }} } \right)} }} \hfill \\ = \frac{{\coprod\nolimits_{n = 1}^{k} {\left( {1 + \Updelta {\text{Inc}}_{{t_{n} - t_{n - 1} }} } \right) \times \left( {1 - \Updelta \alpha_{{t_{n} - t_{n - 1} }} } \right) \times \left( {1 + \Updelta C_{{{\text{CE}}, \, t_{n} - t_{n - 1} }} } \right)} \times \sum\nolimits_{i = 1}^{m} {{\text{Inc}}_{i} \times {\text{RRR}}_{{i, \, C\;{\text{vs}} .\;B}} \times (1 \, - \, \alpha_{{{\text{death}},i}} ) \times C_{{{\text{CE}}, \, i}} } }}{{\coprod\nolimits_{n = 1}^{k} {\left( {1 + \Updelta {\text{Inc}}_{{t_{n} - t_{n - 1} }} } \right)} \times \sum\nolimits_{i = 1}^{m} {{\text{Inc}}_{i} \times {\text{RRR}}_{{i, \, C\;{\text{vs}} .\;B}} \times w_{i} } }} + \frac{{\coprod\nolimits_{n = 1}^{k} {\left( {1 + \Updelta {\text{Inc}}_{{t_{n} - t_{n - 1} }} } \right) \times \left( {1 - \Updelta \alpha_{{t_{n} - t_{n - 1} }} } \right) \times \left( {1 + \Updelta C_{{CE, \, t_{n} - t_{n - 1} }} } \right)} \times \vartheta }}{{\coprod\nolimits_{n = 1}^{k} {\left( {1 + \Updelta Inc_{{t_{n} - t_{n - 1} }} } \right)} }} \hfill \\ = \frac{{\coprod\nolimits_{n = 1}^{k} {\left( {1 + \Updelta {\text{Inc}}_{{t_{n} - t_{n - 1} }} } \right) \times \left( {1 - \Updelta \alpha_{{t_{n} - t_{n - 1} }} } \right) \times \left( {1 + \Updelta C_{{{\text{CE}}, \, t_{n} - t_{n - 1} }} } \right)} \times \sum\nolimits_{i = 1}^{m} {{\text{Inc}}_{i} \times {\text{RRR}}_{{i, \, B\;{\text{vs}} .\;A}} \times (1 \, - \, \alpha_{{{\text{death}},i}} ) \times C_{{{\text{CE}}, \, i}} } }}{{\coprod\nolimits_{n = 1}^{k} {\left( {1 + \Updelta {\text{Inc}}_{{t_{n} - t_{n - 1} }} } \right)} \times \sum\nolimits_{i = 1}^{m} {{\text{Inc}}_{i} \times {\text{RRR}}_{{i, \, B\;{\text{vs}} .\;A}} \times w_{i} } }} \hfill \\ \end{gathered} $$
(12)

When deleting \( \coprod\nolimits_{n = 1}^{k} {\left( {1 + \Updelta {\text{Inc}}_{{t_{n} - t_{n - 1} }} } \right)} \) from the denominator of each term, each term is multiplied with \( \coprod\nolimits_{n = 1}^{k} {\left( {1 + \Updelta {\text{Inc}}_{{t_{n} - t_{n - 1} }} } \right) \, \times \, \left( {1 - \Updelta \alpha_{{t_{n} - t_{n - 1} }} } \right) \times \left( {1 + \Updelta C_{{{\text{CE}}, \, t_{n} - t_{n - 1} }} } \right)} \). Hence, differences between interventions in terms of the ratio of incremental downstream costs to incremental downstream effects change proportional to \( \coprod\nolimits_{n = 1}^{k} {\left( {1 + \Updelta {\text{Inc}}_{{t_{n} - t_{n - 1} }} } \right) \times \left( {1 - \Updelta \alpha_{{t_{n} - t_{n - 1} }} } \right) \times \left( {1 + \Updelta C_{{{\text{CE}}, \, t_{n} - t_{n - 1} }} } \right)} \), thus proving version 3 of the test.

Proof of version 4

When extrapolating cost-effectiveness beyond the trial period over the time horizon k, we introduce factors k 1 and k 2 to describe that the relative change in incidence of each clinical event (\( {\text{Inc}}_{i} \)) and the relative change in death rate of each CE (\( 1 - \Updelta \alpha_{i} \)) stay constant over k periods. Using Eq. 11 as a basis we obtain Eq. 13.

$$ \begin{gathered} \frac{{k_{1} \times k_{2} \times \coprod\nolimits_{n = 1}^{k} {\left( {1 + \Updelta C_{{{\text{CE}}, \, t_{n} - t_{n - 1} }} } \right)} \times \sum\nolimits_{i = 1}^{m} {\left( {1 + \Updelta {\text{Inc}}_{i} } \right) \times {\text{Inc}}_{i} \times {\text{RRR}}_{{i, \, D\;{\text{vs}} .\;C}} \times \left( {1 - \Updelta \alpha_{{{\text{death}},i}} } \right) \times (1 \, - \, \alpha_{{{\text{death}},i}} ) \times C_{{{\text{CE}}, \, i}} } }}{{k_{1} \times \sum\nolimits_{i = 1}^{m} {\left( {1 + \Updelta {\text{Inc}}_{i} } \right) \times {\text{Inc}}_{i} \times {\text{RRR}}_{{i, \, D\;{\text{vs}} .\;C}} \times w_{i} } }} + \frac{{k_{1} \times k_{2} \times \coprod\nolimits_{n = 1}^{k} {\left( {1 + \Updelta C_{{{\text{CE}}, \, t_{n} - t_{n - 1} }} } \right)} \times \left( {1 - \Updelta \alpha_{{{\text{death}},i}} } \right) \times \theta }}{{k_{1} \times \sum\nolimits_{i = 1}^{m} {\left( {1 + \Updelta {\text{Inc}}_{i} } \right)} }} \hfill \\ = \frac{{k_{1} \times k_{2} \times \coprod\nolimits_{n = 1}^{k} {\left( {1 + \Updelta C_{{{\text{CE}}, \, t_{n} - t_{n - 1} }} } \right)} \times \sum\nolimits_{i = 1}^{m} {\left( {1 + \Updelta {\text{Inc}}_{i} } \right) \times {\text{Inc}}_{i} \times {\text{RRR}}_{{i, \, C\;{\text{vs}} .\;B}} \times \left( {1 - \Updelta \alpha_{{{\text{death}},i}} } \right) \times (1 \, - \, \alpha_{{{\text{death}},i}} ) \times C_{{{\text{CE}}, \, i}} } }}{{k_{1} \times \sum\nolimits_{i = 1}^{m} {\left( {1 + \Updelta {\text{Inc}}_{i} } \right) \times {\text{Inc}}_{i} \times {\text{RRR}}_{{i, \, C\;{\text{vs}} .\;B}} \times w_{i} } }} + \frac{{k_{1} \times k_{2} \times \coprod\nolimits_{n = 1}^{k} {\left( {1 + \Updelta C_{{{\text{CE}}, \, t_{n} - t_{n - 1} }} } \right)} \times \left( {1 - \Updelta \alpha_{{{\text{death}},i}} } \right) \times \vartheta }}{{k_{1} \times \sum\nolimits_{i = 1}^{m} {\left( {1 + \Updelta Inc_{i} } \right)} }} \hfill \\ = \frac{{k_{1} \times k_{2} \times \coprod\nolimits_{n = 1}^{k} {\left( {1 + \Updelta C_{{{\text{CE}}, \, t_{n} - t_{n - 1} }} } \right)} \times \sum\nolimits_{i = 1}^{m} {\left( {1 + \Updelta {\text{Inc}}_{i} } \right) \times {\text{Inc}}_{i} \times {\text{RRR}}_{{i, \, B\;{\text{vs}} .\;A}} \times \left( {1 - \Updelta \alpha_{{{\text{death}},i}} } \right) \times (1 \, - \, \alpha_{{{\text{death}},i}} ) \times C_{{{\text{CE}}, \, i}} } }}{{k_{1} \times \sum\nolimits_{i = 1}^{m} {\left( {1 + \Updelta {\text{Inc}}_{i} } \right) \times {\text{Inc}}_{i} \times {\text{RRR}}_{{i, \, B\;{\text{vs}} .\;A}} \times w_{i} } }} \hfill \\ \end{gathered} $$
(13)

When deleting \( k_{1} \times \sum\nolimits_{i = 1}^{m} {\left( {1 + \Updelta {\text{Inc}}_{i} } \right)} \) from the denominator of each term it is easy to see that each term is multiplied with \( k_{1} \times k_{2} \times \coprod\nolimits_{n = 1}^{k} {\left( {1 + \Updelta C_{{{\text{CE}}, \, t_{n} - t_{n - 1} }} } \right)} \). Hence, differences between interventions in terms of the ratio of incremental downstream costs to incremental downstream effects change proportional to \( k_{1} \times k_{2} \times \coprod\nolimits_{n = 1}^{k} {\left( {1 + \Updelta C_{{{\text{CE}}, \, t_{n} - t_{n - 1} }} } \right)} \), thus proving version 4 of the test.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gandjour, A., Gafni, A. Internal validation of models with several interventions. Eur J Health Econ 14, 901–909 (2013). https://doi.org/10.1007/s10198-012-0434-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10198-012-0434-3

Keywords

JEL Classification

Navigation