Skip to main content
Log in

A Lévy-driven rainfall model with applications to futures pricing

  • Original Paper
  • Published:
AStA Advances in Statistical Analysis Aims and scope Submit manuscript

Abstract

We propose a parsimonious stochastic model for characterising the distributional and temporal properties of rainfall. The model is based on an integrated Ornstein–Uhlenbeck process driven by the Hougaard Lévy process. We derive properties of this process and propose an extended model which generalises the Ornstein–Uhlenbeck process to the class of continuous-time ARMA processes. The model is illustrated by fitting it to empirical rainfall data on both daily and hourly time scales. It is shown that the model is sufficiently flexible to capture important features of the rainfall process across locations and time scales. Finally, we study an application to the pricing of rainfall derivatives which introduces the market price of risk via the Esscher transform. We first give a result specifying the risk-neutral expectation of a general moving average process. Then we illustrate the pricing method by calculating futures prices based on empirical daily rainfall data, where the rainfall process is specified by our model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The conditions are as follows: \(a\) and \(b\) have no common zeroes, the roots of \(a\) have multiplicity 1, and \(\text{ Im }(\lambda _i) \in (-\frac{\pi }{\delta },\frac{\pi }{\delta })\).

References

  • Applebaum, D.: Lévy Processes and Stochastic Calculus, 2nd edn. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  • Barndorff-Nielsen, O.: Superposition of Ornstein–Uhlenbeck type processes. Theory Probab. Appl. 45(2), 175–194 (2001)

    Article  MathSciNet  Google Scholar 

  • Barndorff-Nielsen, O.E., Shephard, N.: Non-Gaussian Ornstein–Uhlenbeck-based models and some of their uses in financial economics. J. R. Stat. Soc. Ser. B Stat. Methodol. 63(2), 167–241 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • Basse-O’Connor, A., Graversen, S., Pedersen, J.: Stochastic integration on the real line. Theory Probab. Appl. 58(2), 193–215 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  • Benth, F., Šaltytė Benth, J.: Modeling and Pricing in Financial Markets for Weather Derivatives, 1st edn. World Scientific Publishing, Singapore (2013)

  • Brockwell, P.: Lévy-driven CARMA processes. Ann. Inst. Stat. Math. 53(1), 113–124 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • Brockwell, P.: Representations of continuous-time ARMA processes. J. Appl. Probab. 41(2004), 375–382 (2004)

    Article  MathSciNet  Google Scholar 

  • Brockwell, P.J., Lindner, A.: Existence and uniqueness of stationary Lévy-driven CARMA processes. Stoch. Process. Appl. 119(8), 2660–2681 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  • Brockwell, P., Lindner, A.: Integration of CARMA processes and spot volatility modelling. J. Time Ser. Anal. 34(2), 156–167 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  • Carmona, R., Diko, P.: Pricing precipitation based derivatives. Int. J. Theor. Appl. Financ. 08(07), 959–988 (2005)

    Article  MathSciNet  Google Scholar 

  • Chandler, R.E.: A spectral method for estimating parameters in rainfall models. Bernoulli 3(3), 301–322 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  • Chin, E.H.: Modeling daily precipitation occurrence process with Markov Chain. Water Resour. Res. 13(6), 949–956 (1977)

    Article  Google Scholar 

  • Coe, R., Stern, R.: Fitting models to daily rainfall data. J. Appl. Meteorol. 21(7), 1024–1031 (1982)

    Article  Google Scholar 

  • Cont, R., Tankov, P.: Financial Modelling with Jump Processes. Chapman & Hall, London (2004)

    MATH  Google Scholar 

  • Cowpertwait, P.S.P.: A generalized point process model for rainfall. Proc. R. Soc. A Math. Phys. Eng. Sci. 447(1929), 23–37 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  • Cox, D.R., Isham, V.: A simple spatial-temporal model of rainfall. Proc. R. Soc. A Math. Phys. Eng. Sci. 415(1849), 317–328 (1988)

    Article  MathSciNet  Google Scholar 

  • Dunn, P.K.: Occurrence and quantity of precipitation can be modelled simultaneously. Int. J. Climatol. 24(10), 1231–1239 (2004)

    Article  MathSciNet  Google Scholar 

  • Esche, F., Schweizer, M.: Minimal entropy preserves the Lévy property: how and why. Stoch. Process. Appl. 115(2), 299–327 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Esscher, F.: On the probability function in the collective theory of risk. Scand. Actuar. J. 15(3), 175–195 (1932)

  • Frittelli, M.: The minimal entropy martingale measure and the valuation problem in incomplete markets. Math. Financ. 10(1), 39–52 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  • Gerber, H., Shiu, E.: Option pricing by Esscher transforms. Trans. Soc. Actuar. 46, 99–191 (1994)

  • Grigelionis, B.: On the Hougaard subordinated Gaussian Lévy processes. Stat. Probab. Lett. 81(8), 998–1002 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • Härdle, W.K., Cabrera, B.L.: The implied market price of weather risk. Appli. Math. Financ. 19(1), 59–95 (2012)

    Article  Google Scholar 

  • Jørgensen, B.: The Theory of Dispersion Models. Chapmann & Hall, London (1997)

    Google Scholar 

  • Katz, R.: Precipitation as a chain-dependent process. J. Appl. Meteorol. 16(7), 671–676 (1977)

    Article  Google Scholar 

  • Künsch, H.R.: The Jackknife and the bootstrap for general stationary observations. Ann. Stat. 17(3), 1217–1241 (1989)

    Article  MATH  Google Scholar 

  • Lee, M., Whitmore, G.: Stochastic processes directed by randomized time. J. Appl. Probab. 30(2), 302–314 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  • Leobacher, G., Ngare, P.: On modelling and pricing rainfall derivatives with seasonality. Appl. Math. Financ. 18(1), 71–91 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  • López Cabrera, B., Odening, M., Ritter, M.: Pricing rainfall futures at the CME. J. Bank. Financ. 37(11), 4286–4298 (2013)

    Article  Google Scholar 

  • Øksendal, B.: Stochastic Differential Equations: An Introduction with Applications, 6th edn. Springer, Berlin (2003)

    Book  Google Scholar 

  • Onof, C., Chandler, R.E., Kakou, A., Northrop, P., Wheater, H.S., Isham, V.: Rainfall modelling using Poisson-cluster processes: a review of developments. Stoch. Environ. Res. Risk Assess. 14(6), 384–411 (2000)

    Article  MATH  Google Scholar 

  • Politis, D.N., Romano, J.P.: The stationary bootstrap. J. Am. Stat. Assoc. 89(428), 1303–1313 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  • Rodriguez-Iturbe, I., Cox, D.R., Isham, V.: Some models for rainfall based on stochastic point processes. Proc. R. Soc. A Math. Phys. Eng. Sci. 410(1839), 269–288 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  • Samuel, C.R.: Stochastic rainfall modelling of convective storms in Walnut Gulch, Arizona. Ph.D. thesis, Imperial College London (1999)

  • UK Meteorological Office: Met Office Integrated Data Archive System (MIDAS) Land and Marine Surface Stations Data (1853-current)’. NCAS British Atmospheric Data Centre. http://catalogue.ceda.ac.uk/uuid/220a65615218d5c9cc9e4785a3234bd0 (2012)

  • Wilks, D.: Multisite generalization of a daily stochastic precipitation generation model. J. Hydrol. 210(1), 178–191 (1998)

    Article  Google Scholar 

  • Woolhiser, D.A., Roldán, J.: Stochastic daily precipitation models: 2. A comparison of distributions of amounts. Water Resour. Res. 18(5), 1461–1468 (1982)

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Associate Editor and two anonymous referees for constructive suggestions that led to significant improvements of the paper. R. C. Noven gratefully acknowledges financial support from the Grantham Institute for Climate Change, Imperial College London. We thank the UK Meteorological Office and the British Atmospheric Data Centre for providing the data used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ragnhild C. Noven.

Appendix

Appendix

In the following we present the proofs of our theoretical results.

First we quote a result (Cont and Tankov 2004, Lemma 15.1) which will be used repeatedly in the following:

Lemma 1

Let \(f: [0,T]\rightarrow \mathbb {R}\) be a left-continuous function and \(L(t)\) a Lévy process. Then

$$\begin{aligned} E\left[ \exp \left\{ \int _0^t if(s) \mathrm{d}L(s) \right\} \right] =\exp \left\{ \int _0^t \psi (f(s)) \mathrm{d}s, \right\} , \end{aligned}$$

where \(\psi (t)\) is the characteristic exponent of \(L\), given by

$$\begin{aligned} \exp \{\psi (u)\}=E\left[ e^{iuL(1)}\right] . \end{aligned}$$

Characteristic function of \({\varvec{\Delta Y}}\) The characteristic function of \(\Delta Y\) is given by

$$\begin{aligned} \varphi _{\Delta Y}=\exp \left\{ \int _0^{\infty }\psi (ug_1(s))\, \mathrm{d}s+\int _0^1 \psi (ug_2(s)) \, \mathrm{d}s\right\} , \end{aligned}$$

where

$$\begin{aligned} g_1(s)&=\sum _{k=1}^p \frac{e^{-\lambda _k s}-e^{-\lambda _k(1+s)}}{\lambda _k}, \\ g_2(s)&=\sum _{k=1}^p \frac{1-e^{-\lambda _k(1-s)}}{\lambda _k}. \end{aligned}$$

This follows immediately from applying Lemma 1 to the expression given in (12) and noting that because \(\Delta Y\) is stationary we can set \(t_{i-1}=t_0=0\), causing the second integral to vanish.

Proof of Proposition 1 By construction of \(f_\delta \), we have that

$$\begin{aligned} f(x)=\frac{1}{2 \pi } \int _{\mathbb {R}} \hat{f}_\delta (\xi ) e^{(\delta +i\xi )x} \, \mathrm{d}\xi , \end{aligned}$$

and hence by the Fubini theorem, it follows that

$$\begin{aligned} E_Q[\left. f(Y(\tau _2)-Y(\tau _1)) \right| \mathcal {F}_t]=\frac{1}{2 \pi } \int _{\mathbb {R}} \hat{f}_\delta (\xi ) E_Q\left[ \left. e^{(\delta +i\xi )(Y(\tau _2)-Y(\tau _1))} \right| \mathcal {F}_t\right] \, \mathrm{d}\xi , \end{aligned}$$

similar to the proof of Proposition 8.4 in Benth and Šaltytė Benth (2013).

We now calculate the expectation involving the integrated moving average process \(Y\). To this end, we first split the integrals in the expression for \(Y\) as follows:

$$\begin{aligned}&E_Q \left. \left[ \exp \left\{ (\delta +i \xi )(Y(\tau _2)-Y(\tau _1)) \right\} \right| \, \mathcal {F}_t \right] \nonumber \\&\quad = \exp \left\{ (\delta +i \xi )\left( A(0,\tau _2)-A(0,\tau _1) + \int _0^t \left[ g(\tau _2,v)-g(\tau _1,v) \right] \, \mathrm{d}L(v) \right) \right\} \nonumber \\&\qquad \times \underbrace{E_Q \left[ \left. \exp \left\{ (\delta +i \xi ) \int _t^{\tau _1}\left[ g(\tau _2,v)-g(\tau _1,v) \right] \, \mathrm{d}L(v) \right\} \right| \mathcal {F}_t \right] }_{\mathbf {(A)}} \nonumber \\&\qquad \times \underbrace{E_Q \left[ \left. \exp \left\{ (\delta +i \xi ) \int _{\tau _1}^{\tau _2} g(\tau _2,v) \, \mathrm{d}L(v) \right\} \right| \mathcal {F}_t \right] }_{\mathbf {(B)}}. \end{aligned}$$
(20)

By the abstract Bayes formula (see, e.g. Øksendal 2003), for the measure \(Q\) such that \(\mathrm{d}Q/\mathrm{d}P|_{\mathcal {F}_t}=Z(t)\), with \(X\) being \(\mathcal {F}_\tau \)-measurable and \(t<\tau \), we have that

$$\begin{aligned} E_Q(X|\mathcal {F}_t)=E\left( \left. X \frac{Z(\tau )}{Z(t)} \right| \mathcal {F}_t \right) . \end{aligned}$$

Recall that we are working with the Esscher transform, so we have

$$\begin{aligned} Z(t)=\frac{\exp \left\{ \int _0^t \theta (v) \, \mathrm{d}L(v) \right\} }{E\left[ \exp \left\{ \int _0^t \theta (v) \, \mathrm{d}L(v) \right\} \right] }. \end{aligned}$$

Applying the Esscher transform then gives

$$\begin{aligned} \mathbf {(A)} = \,&E \left[ \left. \exp \left\{ \int _t^{\tau _1} (\delta +i \xi ) \left[ g(\tau _2,v)-g(\tau _1,v) \right] \, \mathrm{d}L(v) \right\} \frac{Z(\tau _1)}{Z(t)}\right| \mathcal {F}_t \right] \\ =&\,E \left[ \exp \left\{ \int _t^{\tau _1} \left( (\delta +i \xi ) \left[ g(\tau _2,v)-g(\tau _1,v) \right] +\theta (v) \right) \, \mathrm{d}L(v) \right\} \right] \\&\times \frac{E\left[ \exp \left\{ \int _0^t \theta (v) \, \mathrm{d}L(v) \right\} \right] }{E \left[ \exp \left\{ \int _0^{\tau _1} \theta (v) \, \mathrm{d}L(v) \right\} \right] }, \end{aligned}$$

where we get an unconditional expectation due to the independent increments of \(L\).

We can extend Lemma 1 to complex-valued functions to get

$$\begin{aligned} E\left[ \exp \left\{ \int _0^t (a(v)+ib(v)) \, \mathrm{d}L(v) \right\} \right] =\exp \left\{ \int _0^t \psi _1(-ia(v)+b(v)) \, \mathrm{d}v \right\} , \end{aligned}$$
(21)

where the term on the RHS equals

$$\begin{aligned} \exp \left\{ \int _0^t \ln E \left( \exp \{a(v)+ib(v)\}L(1) \right) \, \mathrm{d}v \right\} , \end{aligned}$$

and we have that

$$\begin{aligned} \left| E \left( e^{(a(v)+ib(v))L(1)} \right) \right| \le E\left( e^{a(v)L(1)}\right) , \end{aligned}$$

and so if \(\sup _v a(v)<k\), then the last term is bounded by the exponential moment condition given in (17).

Applying (21) to the terms in \(\mathbf {(A)}\) gives

$$\begin{aligned} \mathbf {(A)}&= \exp \Big \{\int _t^{\tau _1} \psi \Big (\xi \Big [g(\tau _2,v)-g(\tau _1,v) \Big ] -i\Big [\theta (v)\\&+\delta \Big (g(\tau _2,v)-g(\tau _1,v) \Big ) \Big ] \Big ) - \psi \Big (-i\theta (v) \Big ) \, \mathrm{d}v\Big \}, \end{aligned}$$

where the requirement \(\sup _{v \in [t,\tau _2]} \left( |\theta (v)|+\delta |g(\tau _2,v)-g(\tau _1,v)| \right) <k\) ensures that the terms in the above equation are well-defined.

Now we consider the Lévy–Khintchine formula for subordinators, which takes the form

$$\begin{aligned} E\left( e^{iuL(t)}\right) =\exp \left\{ t \psi (u) \right\} =\exp \left\{ t \int _{\mathbb {R}_+} \left( e^{iuy}-1\right) \nu (\mathrm{d}y) \right\} , \end{aligned}$$

where \(\nu (\cdot )\) is the Lévy measure associated with \(L\). We can analytically continue this formula to complex arguments (Applebaum 2009, p. 338), and so we get that

$$\begin{aligned} \mathbf {(A)}&= \exp \left\{ \int _t^{\tau _1} \int _{\mathbb {R}_+} e^{\theta (v)y}\left( e^{(\delta +i \xi ) \left[ g(\tau _2,v)-g(\tau _1,v) \right] y}-1\right) \nu (\mathrm{d}y) \, \mathrm{d}v \right\} . \end{aligned}$$

We note that this expression can also be written as

$$\begin{aligned} E\left[ \exp \left\{ \int _t^{\tau _1} (\delta +i \xi ) \left[ g(\tau _2,v)-g(\tau _1,v) \right] \, \mathrm{d}L_Q(v) \right\} \right] , \end{aligned}$$

where \(L_Q(v)\) is now a non-stationary stochastic process with jump measure depending on time, namely

$$\begin{aligned} \nu _\theta (\mathrm{d}v,\mathrm{d}y)=e^{\theta (v)y} \nu (\mathrm{d}y) \mathrm{d}v. \end{aligned}$$

Thus we see that conditioning with respect to the measure \(Q\) has the effect of exponentially tilting the jump measure of \(L\) at time \(v\) according to \(\theta (v)\), so the jumps of \(L\) at times \(v\) will be weighted more or less in the expectation depending on the sign of \(\theta (v)\).

Now defining

$$\begin{aligned} \psi _\theta (v,\gamma c(\cdot )):=\int _{\mathbb {R}_+} e^{\theta (v)y} \left( e^{\gamma c(v)y}-1\right) \nu (\mathrm{d}y), \end{aligned}$$
(22)

we get that

$$\begin{aligned} \mathbf {(A)}=\exp \left\{ \int _t^{\tau _1} \psi _\theta \Big (v,(\delta +i \xi )\left[ g(\tau _2,v)-g(\tau _1,v) \right] \Big ) \, \mathrm{d}v \right\} ; \end{aligned}$$

and by similar arguments

$$\begin{aligned} \mathbf {(B)}=\exp \left\{ \int _{\tau _1}^{\tau _2} \psi _\theta \Big (v,(\delta +i \xi )g(\tau _2,v) \Big ) \, \mathrm{d}v \right\} . \end{aligned}$$

Substituting these expressions into (20) then gives the result.

Hougaard process The Hougaard process has Lévy measure given by (Grigelionis 2011)

$$\begin{aligned} \nu (\mathrm{d}y)= \left( \rho ^{\frac{1}{\kappa -1}} \Gamma \left( \frac{\kappa }{\kappa -1} \right) (\kappa -1)^{\kappa /(\kappa -1)} \right) ^{-1} y^{\frac{3-2\kappa }{\kappa -1}} \exp \left\{ - \frac{\mu ^{1-\kappa }}{\rho (\kappa -1)} y \right\} \mathrm{d}y, \end{aligned}$$

in terms of the Tweedie parameterisation. We also have that when \(L\) is the Hougaard process, the function \(\psi _\theta \) defined in (22) takes the form

$$\begin{aligned} \psi _\theta (v,\gamma c(v))=\frac{\mu ^{2-\kappa }}{\rho (2-\kappa )} \left[ \left( 1-\frac{\rho (\kappa -1)\left( i \gamma c(v)+\theta (s)\right) }{\mu ^{1-\kappa }} \right) ^{(\kappa -2)/(\kappa -1)}-1 \right] . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noven, R.C., Veraart, A.E.D. & Gandy, A. A Lévy-driven rainfall model with applications to futures pricing. AStA Adv Stat Anal 99, 403–432 (2015). https://doi.org/10.1007/s10182-015-0246-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10182-015-0246-8

Keywords

Navigation