Skip to main content

Advertisement

Log in

Utilization of CO2 into recycled construction materials: A systematic literature review

  • REVIEW
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

In recent years, as the concepts of “zero waste” and “low carbon” gradually become hot topics, the unparalleled generation of construction and demolition (C&D) waste that poses a significant obstacle to the sustainable development of the built environment has attracted a lot of attention from researchers. Whether the studies on the combination of C&D waste recycling and carbon dioxide (CO2) utilization provide a feasible way to transform the two goals is worthy of discussion. Thus, this study targeted to review previous research to describe the research trend and clear the positive and negative sides of CO2 employment in recycled construction materials. It shows that after the utilization of CO2 in the recycling process, the performance of recycled construction materials can be improved in many aspects under a proper carbonation reaction. Besides, many studies have proved that the carbonation of C&D waste is a recycling method and effective carbon capture and storage tool to accelerate the sequestration of CO2. It should be noted that although the current technical research on the carbonation of recycled construction materials has become mature and feasible, the use of carbonation has also contributed to apparent negative effects. On the one hand, carbonation is only positive for plain concrete, and the reinforced steel structure can be corroded by acid. On the other hand, the high equipment requirements used in the carbonation process could lead to increased economic costs. These reasons collectively hinder the application of carbonation technology in practical construction projects. The United Nations Sustainable Development Goals (SDGs) and carbon-neutral goals of countries have put forward higher and more explicit requirements for global sustainable development. Theoretically, the carbonation of recycled construction materials is one of the viable paths for sustainability. However, technical difficulties such as energy consumption, economic cost, and corrosion for widespread applications need to be overcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3
Fig.4
Fig.5
Fig.6
Fig.7
Fig.8

Similar content being viewed by others

References

  1. Schiller G, Müller F, Ortlepp R (2017) Mapping the anthropogenic stock in Germany: metabolic evidence for a circular economy. Resour Conserv Recycl 123:93–107. https://doi.org/10.1016/j.resconrec.2016.08.007

    Article  Google Scholar 

  2. Korhonen J, Honkasalo A, Seppälä J (2018) Circular economy: the concept and its limitations. Ecol Econ 143:37–46. https://doi.org/10.1016/j.ecolecon.2017.06.041

    Article  Google Scholar 

  3. Foxon TJ (2011) A coevolutionary framework for analysing a transition to a sustainable low carbon economy. Ecol Econ 70:2258–2267. https://doi.org/10.1016/j.ecolecon.2011.07.014

    Article  Google Scholar 

  4. Sameer H, Bringezu S (2019) Life cycle input indicators of material resource use for enhancing sustainability assessment schemes of buildings. J Build Eng 21:230–242. https://doi.org/10.1016/j.jobe.2018.10.010

    Article  Google Scholar 

  5. Yang H, Xia J, Thompson JR, Flower RJ (2017) Urban construction and demolition waste and landfill failure in Shenzhen, China. Waste Manag 63:393–396. https://doi.org/10.1016/j.wasman.2017.01.026

    Article  Google Scholar 

  6. Zhang N, Zheng L, Duan H et al (2019) Differences of methods to quantify construction and demolition waste for less-developed but fast-growing countries: China as a case study. Environ Sci Pollut Res 26:25513–25525. https://doi.org/10.1007/s11356-019-05841-4

    Article  Google Scholar 

  7. Gangolells M, Casals M, Forcada N, Macarulla M (2014) Analysis of the implementation of effective waste management practices in construction projects and sites. Resour Conserv Recycl 93:99–111. https://doi.org/10.1016/j.resconrec.2014.10.006

    Article  Google Scholar 

  8. Zhang N, Duan H, Sun P et al (2020) Characterizing the generation and environmental impacts of subway-related excavated soil and rock in China. J Clean Prod 248:119242. https://doi.org/10.1016/j.jclepro.2019.119242

    Article  Google Scholar 

  9. Oliveira MLS, Izquierdo M, Querol X et al (2019) Nanoparticles from construction wastes: a problem to health and the environment. J Clean Prod 219:236–243. https://doi.org/10.1016/j.jclepro.2019.02.096

    Article  Google Scholar 

  10. Menegaki M, Damigos D (2018) A review on current situation and challenges of construction and demolition waste management. Curr Opin Green Sustain Chem 13:8–15. https://doi.org/10.1016/j.cogsc.2018.02.010

    Article  Google Scholar 

  11. Simion IM, Fortuna ME, Bonoli A, Gavrilescu M (2013) Comparing environmental impacts of natural inert and recycled construction and demolition waste processing using LCA. J Environ Eng Landsc Manag 21:273–287. https://doi.org/10.3846/16486897.2013.852558

    Article  Google Scholar 

  12. Schiller G, Lützkendorf T, Gruhler K et al (2019) Material flows in buildings’ life cycle and regions – material inventories to support planning towards circular economy. IOP Conf Ser Earth Environ Sci 290:012031. https://doi.org/10.1088/1755-1315/290/1/012031

    Article  Google Scholar 

  13. Bui M, Adjiman CS, Bardow A et al (2018) Carbon capture and storage (CCS): the way forward. Energy Environ Sci 11:1062–1176. https://doi.org/10.1039/C7EE02342A

    Article  Google Scholar 

  14. Monteiro PJM, Miller SA, Horvath A (2017) Towards sustainable concrete. Nat Mater 16:698–699. https://doi.org/10.1038/nmat4930

    Article  Google Scholar 

  15. Liu B, Qin J, Shi J et al (2021) New perspectives on utilization of CO 2 sequestration technologies in cement-based materials. Constr Build Mater 272:121660. https://doi.org/10.1016/j.conbuildmat.2020.121660

    Article  Google Scholar 

  16. Donthu N, Kumar S, Pattnaik D (2020) Forty-five years of Journal of business research: a bibliometric analysis. J Bus Res 109:1–14. https://doi.org/10.1016/j.jbusres.2019.10.039

    Article  Google Scholar 

  17. Peris A, Meijers E, van Ham M (2018) The evolution of the systems of cities literature since 1995: schools of thought and their interaction. Netw Spat Econ 18:533–554. https://doi.org/10.1007/s11067-018-9410-5

    Article  MathSciNet  MATH  Google Scholar 

  18. Ashraf W (2016) Carbonation of cement-based materials: challenges and opportunities. Constr Build Mater 120:558–570. https://doi.org/10.1016/j.conbuildmat.2016.05.080

    Article  Google Scholar 

  19. Zhang D, Ghouleh Z, Shao Y (2017) Review on carbonation curing of cement-based materials. J CO2 Util 21:119–131. https://doi.org/10.1016/j.jcou.2017.07.003

    Article  Google Scholar 

  20. Pade C, Guimaraes M (2007) The CO2 uptake of concrete in a 100 year perspective. Cem Concr Res 37:1348–1356. https://doi.org/10.1016/j.cemconres.2007.06.009

    Article  Google Scholar 

  21. Renforth P (2019) The negative emission potential of alkaline materials. Nat Commun 10:1401. https://doi.org/10.1038/s41467-019-09475-5

    Article  Google Scholar 

  22. Liang C, Pan B, Ma Z et al (2020) Utilization of CO2 curing to enhance the properties of recycled aggregate and prepared concrete: a review. Cem Concr Compos 105:103446. https://doi.org/10.1016/j.cemconcomp.2019.103446

    Article  Google Scholar 

  23. Kashef-Haghighi S, Ghoshal S (2013) Physico-chemical processes limiting CO 2 uptake in concrete during accelerated carbonation curing. Ind Eng Chem Res 52:5529–5537. https://doi.org/10.1021/ie303275e

    Article  Google Scholar 

  24. Ekolu SO (2016) A review on effects of curing, sheltering, and CO2 concentration upon natural carbonation of concrete. Constr Build Mater 127:306–320. https://doi.org/10.1016/j.conbuildmat.2016.09.056

    Article  Google Scholar 

  25. Paria S, Yuet PK (2006) Solidification–stabilization of organic and inorganic contaminants using portland cement: a literature review. Environ Rev 14:217–255. https://doi.org/10.1139/a06-004

    Article  Google Scholar 

  26. Disfani MM, Arulrajah A, Haghighi H et al (2014) Flexural beam fatigue strength evaluation of crushed brick as a supplementary material in cement stabilized recycled concrete aggregates. Constr Build Mater 68:667–676. https://doi.org/10.1016/j.conbuildmat.2014.07.007

    Article  Google Scholar 

  27. Hama SM, Hilal NN (2017) Fresh properties of self-compacting concrete with plastic waste as partial replacement of sand. Int J Sustain Built Environ 6:299–308. https://doi.org/10.1016/j.ijsbe.2017.01.001

    Article  Google Scholar 

  28. Wang L, Chen SS, Tsang DCW et al (2016) Value-added recycling of construction waste wood into noise and thermal insulating cement-bonded particleboards. Constr Build Mater 125:316–325. https://doi.org/10.1016/j.conbuildmat.2016.08.053

    Article  Google Scholar 

  29. Ogrodnik P, Szulej J, Franus W (2018) The wastes of sanitary ceramics as recycling aggregate to special concretes. Materials 11:1275. https://doi.org/10.3390/ma11081275

    Article  Google Scholar 

  30. Ahmed H, Tiznobaik M, Huda SB et al (2020) Recycled aggregate concrete from large-scale production to sustainable field application. Constr Build Mater 262:119979. https://doi.org/10.1016/j.conbuildmat.2020.119979

    Article  Google Scholar 

  31. Ashish DK (2019) Concrete made with waste marble powder and supplementary cementitious material for sustainable development. J Clean Prod 211:716–729. https://doi.org/10.1016/j.jclepro.2018.11.245

    Article  Google Scholar 

  32. Agrela F, Barbudo A, Ramírez A et al (2012) Construction of road sections using mixed recycled aggregates treated with cement in Malaga, Spain. Resour Conserv Recycl 58:98–106. https://doi.org/10.1016/j.resconrec.2011.11.003

    Article  Google Scholar 

  33. Okafor FO (2010) Performance of recycled asphalt pavement as coarse aggregate in concrete. Leonardo Electron J Pract Technol 17:47–58

    Google Scholar 

  34. Zhan B, Poon C, Shi C (2013) CO2 curing for improving the properties of concrete blocks containing recycled aggregates. Cem Concr Compos 42:1–8. https://doi.org/10.1016/j.cemconcomp.2013.04.013

    Article  Google Scholar 

  35. Shi C, Wu Y (2009) CO2 curing of concrete blocks. Concr Int 31:39–43

    Google Scholar 

  36. Neves R, Branco F, de Brito J (2013) Field assessment of the relationship between natural and accelerated concrete carbonation resistance. Cem Concr Compos 41:9–15. https://doi.org/10.1016/j.cemconcomp.2013.04.006

    Article  Google Scholar 

  37. Yi Z, Wang T, Guo R (2020) Sustainable building material from CO2 mineralization slag: aggregate for concretes and effect of CO2 curing. J CO2 Util 40:101196. https://doi.org/10.1016/j.jcou.2020.101196

    Article  Google Scholar 

  38. Ben Ghacham A, Pasquier L-C, Cecchi E et al (2017) Valorization of waste concrete through CO2 mineral carbonation: optimizing parameters and improving reactivity using concrete separation. J Clean Prod 166:869–878. https://doi.org/10.1016/j.jclepro.2017.08.015

    Article  Google Scholar 

  39. Iizuka A, Fujii M, Yamasaki A, Yanagisawa Y (2004) Development of a new CO 2 sequestration process utilizing the carbonation of waste cement. Ind Eng Chem Res 43:7880–7887. https://doi.org/10.1021/ie0496176

    Article  Google Scholar 

  40. Pasquier L-C, Mercier G, Blais J-F et al (2014) Parameters optimization for direct flue gas CO 2 capture and sequestration by aqueous mineral carbonation using activated serpentinite based mining residue. Appl Geochem 50:66–73. https://doi.org/10.1016/j.apgeochem.2014.08.008

    Article  Google Scholar 

  41. Zhang J, Shi C, Li Y et al (2015) Influence of carbonated recycled concrete aggregate on properties of cement mortar. Constr Build Mater 98:1–7. https://doi.org/10.1016/j.conbuildmat.2015.08.087

    Article  Google Scholar 

  42. Thiery M, Dangla P, Belin P et al (2013) Carbonation kinetics of a bed of recycled concrete aggregates: a laboratory study on model materials. Cem Concr Res 46:50–65. https://doi.org/10.1016/j.cemconres.2013.01.005

    Article  Google Scholar 

  43. Buss W, Jansson S, Wurzer C, Mašek O (2019) Synergies between BECCS and Biochar—maximizing carbon sequestration potential by recycling wood ash. ACS Sustain Chem Eng 7:4204–4209. https://doi.org/10.1021/acssuschemeng.8b05871

    Article  Google Scholar 

  44. Werner C, Schmidt H-P, Gerten D et al (2018) Biogeochemical potential of biomass pyrolysis systems for limiting global warming to 1.5 °C. Environ Res Lett 13:044036. https://doi.org/10.1088/1748-9326/aabb0e

    Article  Google Scholar 

  45. Gupta S, Kua HW (2017) Factors determining the potential of biochar as a carbon capturing and sequestering construction material: critical review. J Mater Civ Eng 29:04017086. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001924

    Article  Google Scholar 

  46. Nair JJ, Shika S, Sreedharan V (2020) Biochar amended concrete for carbon sequestration. IOP Conf Ser Mater Sci Eng 936:012007. https://doi.org/10.1088/1757-899X/936/1/012007

    Article  Google Scholar 

  47. Akhtar A, Sarmah AK (2018) Novel biochar-concrete composites: manufacturing, characterization and evaluation of the mechanical properties. Sci Total Environ 616–617:408–416. https://doi.org/10.1016/j.scitotenv.2017.10.319

    Article  Google Scholar 

  48. Gupta S, Kua HW (2019) Carbonaceous micro-filler for cement: effect of particle size and dosage of biochar on fresh and hardened properties of cement mortar. Sci Total Environ 662:952–962. https://doi.org/10.1016/j.scitotenv.2019.01.269

    Article  Google Scholar 

  49. Tam VWY, Butera A, Le KN, Li W (2020) Utilising CO2 technologies for recycled aggregate concrete: a critical review. Constr Build Mater 250:118903. https://doi.org/10.1016/j.conbuildmat.2020.118903

    Article  Google Scholar 

  50. Shi C, Wu Z, Cao Z et al (2018) Performance of mortar prepared with recycled concrete aggregate enhanced by CO2 and pozzolan slurry. Cem Concr Compos 86:130–138. https://doi.org/10.1016/j.cemconcomp.2017.10.013

    Article  Google Scholar 

  51. Kou S-C, Zhan B, Poon C-S (2014) Use of a CO2 curing step to improve the properties of concrete prepared with recycled aggregates. Cem Concr Compos 45:22–28. https://doi.org/10.1016/j.cemconcomp.2013.09.008

    Article  Google Scholar 

  52. Kurda R, de Brito J, Silvestre JD (2019) Carbonation of concrete made with high amount of fly ash and recycled concrete aggregates for utilization of CO2. J CO2 Util 29:12–19. https://doi.org/10.1016/j.jcou.2018.11.004

    Article  Google Scholar 

  53. Wang L, Chen SS, Tsang DCW et al (2016) Recycling contaminated wood into eco-friendly particleboard using green cement and carbon dioxide curing. J Clean Prod 137:861–870. https://doi.org/10.1016/j.jclepro.2016.07.180

    Article  Google Scholar 

  54. Wang L, Chen L, Tsang DCW et al (2020) Biochar as green additives in cement-based composites with carbon dioxide curing. J Clean Prod 258:120678. https://doi.org/10.1016/j.jclepro.2020.120678

    Article  Google Scholar 

  55. Gupta S, Kua HW, Pang SD (2018) Biochar-mortar composite: manufacturing, evaluation of physical properties and economic viability. Constr Build Mater 167:874–889. https://doi.org/10.1016/j.conbuildmat.2018.02.104

    Article  Google Scholar 

  56. Dixit A, Gupta S, Pang SD, Kua HW (2019) Waste valorisation using biochar for cement replacement and internal curing in ultra-high performance concrete. J Clean Prod 238:117876. https://doi.org/10.1016/j.jclepro.2019.117876

    Article  Google Scholar 

  57. Mastali M, Abdollahnejad Z, Pacheco-Torgal F (2018) Performance of waste based alkaline mortars submitted to accelerated carbon dioxide curing. Resour Conserv Recycl 129:12–19. https://doi.org/10.1016/j.resconrec.2017.10.017

    Article  Google Scholar 

  58. Guo M-Z, Tu Z, Poon CS, Shi C (2018) Improvement of properties of architectural mortars prepared with 100% recycled glass by CO2 curing. Constr Build Mater 179:138–150. https://doi.org/10.1016/j.conbuildmat.2018.05.188

    Article  Google Scholar 

  59. Martín D, Aparicio P, Galán E (2018) Accelerated carbonation of ceramic materials. application to bricks from andalusian factories (Spain). Constr Build Mater 181:598–608. https://doi.org/10.1016/j.conbuildmat.2018.05.285

    Article  Google Scholar 

  60. Saberian M, Li J (2018) Investigation of the mechanical properties and carbonation of construction and demolition materials together with rubber. J Clean Prod 202:553–560. https://doi.org/10.1016/j.jclepro.2018.08.183

    Article  Google Scholar 

  61. Xuan D, Zhan B, Poon CS (2016) Development of a new generation of eco-friendly concrete blocks by accelerated mineral carbonation. J Clean Prod 133:1235–1241. https://doi.org/10.1016/j.jclepro.2016.06.062

    Article  Google Scholar 

  62. Ghouleh Z, Guthrie RIL, Shao Y (2017) Production of carbonate aggregates using steel slag and carbon dioxide for carbon-negative concrete. J CO2 Util 18:125–138. https://doi.org/10.1016/j.jcou.2017.01.009

    Article  Google Scholar 

  63. Moon E-J, Choi YC (2019) Carbon dioxide fixation via accelerated carbonation of cement-based materials: potential for construction materials applications. Constr Build Mater 199:676–687. https://doi.org/10.1016/j.conbuildmat.2018.12.078

    Article  Google Scholar 

  64. Duan H, Miller TR, Liu G, Tam VWY (2019) Construction debris becomes growing concern of growing cities. Waste Manag 83:1–5. https://doi.org/10.1016/j.wasman.2018.10.044

    Article  Google Scholar 

  65. Kashef-Haghighi S, Shao Y, Ghoshal S (2015) Mathematical modeling of CO 2 uptake by concrete during accelerated carbonation curing. Cem Concr Res 67:1–10. https://doi.org/10.1016/j.cemconres.2014.07.020

    Article  Google Scholar 

  66. Kareem WB, Okwori RO, Abubakar HO et al (2019) Evaluation of wood and plastic formworks in building construction industry for sustainable development. J Phys Conf Ser 1378:032007. https://doi.org/10.1088/1742-6596/1378/3/032007

    Article  Google Scholar 

  67. Kern AP, Amor LV, Angulo SC, Montelongo A (2018) Factors influencing temporary wood waste generation in high-rise building construction. Waste Manag 78:446–455. https://doi.org/10.1016/j.wasman.2018.05.057

    Article  Google Scholar 

  68. Li M, Khelifa M, Khennane A, El Ganaoui M (2019) Structural response of cement-bonded wood composite panels as permanent formwork. Compos Struct 209:13–22. https://doi.org/10.1016/j.compstruct.2018.10.079

    Article  Google Scholar 

  69. Yargicoglu EN, Sadasivam BY, Reddy KR, Spokas K (2015) Physical and chemical characterization of waste wood derived biochars. Waste Manag 36:256–268. https://doi.org/10.1016/j.wasman.2014.10.029

    Article  Google Scholar 

  70. Cuthbertson D, Berardi U, Briens C, Berruti F (2019) Biochar from residual biomass as a concrete filler for improved thermal and acoustic properties. Biomass Bioenerg 120:77–83. https://doi.org/10.1016/j.biombioe.2018.11.007

    Article  Google Scholar 

  71. Gupta S, Kua HW, Pang SD (2020) Effect of biochar on mechanical and permeability properties of concrete exposed to elevated temperature. Constr Build Mater 234:117338. https://doi.org/10.1016/j.conbuildmat.2019.117338

    Article  Google Scholar 

  72. Bhat MS, Afeefa QS, Ashok KP, Bashir AG (2014) Brick kiln emissions and its environmental impact: a review. J Ecol Nat Environ 6:1–11. https://doi.org/10.5897/JENE2013.0423

    Article  Google Scholar 

  73. Zhu P, Mao X, Qu W et al (2016) Investigation of using recycled powder from waste of clay bricks and cement solids in reactive powder concrete. Constr Build Mater 113:246–254. https://doi.org/10.1016/j.conbuildmat.2016.03.040

    Article  Google Scholar 

  74. Wong CL, Mo KH, Yap SP et al (2018) Potential use of brick waste as alternate concrete-making materials: a review. J Clean Prod 195:226–239. https://doi.org/10.1016/j.jclepro.2018.05.193

    Article  Google Scholar 

  75. Zhao Y, Gao J, Chen F et al (2018) Utilization of waste clay bricks as coarse and fine aggregates for the preparation of lightweight aggregate concrete. J Clean Prod 201:706–715. https://doi.org/10.1016/j.jclepro.2018.08.103

    Article  Google Scholar 

  76. Patel D, Tiwari RP, Shrivastava R, Yadav RK (2019) Effective utilization of waste glass powder as the substitution of cement in making paste and mortar. Constr Build Mater 199:406–415. https://doi.org/10.1016/j.conbuildmat.2018.12.017

    Article  Google Scholar 

  77. Paramesh G, Varma KBR (2013) Structure-property correlation in BaO-TiO 2 -B 2 O 3 glasses: glass stability, optical, hydrophobic, and dielectric properties. Int J Appl Glass Sci 4:248–255. https://doi.org/10.1111/ijag.12019

    Article  Google Scholar 

  78. Haselbach LM, Thomle JN (2014) An alternative mechanism for accelerated carbon sequestration in concrete. Sustain Cities Soc 12:25–30. https://doi.org/10.1016/j.scs.2014.01.001

    Article  Google Scholar 

  79. Marzouk M, Azab S (2014) Environmental and economic impact assessment of construction and demolition waste disposal using system dynamics. Resour Conserv Recycl 82:41–49. https://doi.org/10.1016/j.resconrec.2013.10.015

    Article  Google Scholar 

  80. Czarnecki L, Woyciechowski P (2015) Modelling of concrete carbonation; is it a process unlimited in time and restricted in space? Bull Pol Acad Sci Tech Sci 63:43–54. https://doi.org/10.1515/bpasts-2015-0006

    Article  Google Scholar 

  81. Engelsen CJ, Mehus J, Pada C, Sæther DH (2005) CO2 uptake during the concrete life cycle: carbon dioxide uptake in demolished and crushed concrete. Nordic Innovation Centre, Norwegian Building Research Institute

  82. Xuan D, Zhan B, Poon CS (2016) Assessment of mechanical properties of concrete incorporating carbonated recycled concrete aggregates. Cem Concr Compos 65:67–74. https://doi.org/10.1016/j.cemconcomp.2015.10.018

    Article  Google Scholar 

  83. Mo L, Zhang F, Deng M et al (2017) Accelerated carbonation and performance of concrete made with steel slag as binding materials and aggregates. Cem Concr Compos 83:138–145. https://doi.org/10.1016/j.cemconcomp.2017.07.018

    Article  Google Scholar 

  84. Kazmi SMS, Munir MJ, Wu Y-F et al (2019) Influence of different treatment methods on the mechanical behavior of recycled aggregate concrete: a comparative study. Cem Concr Compos 104:103398. https://doi.org/10.1016/j.cemconcomp.2019.103398

    Article  Google Scholar 

  85. Gupta S, Kua HW, Pang SD (2019) Biochar-concrete composite: manufacturing, characterization and performance evaluation at elevated temperature. Acad J Civ Eng. https://doi.org/10.26168/ICBBM2019.73

    Article  Google Scholar 

  86. Zhu C, Fang Y, Wei H (2018) Carbonation-cementation of recycled hardened cement paste powder. Constr Build Mater 192:224–232. https://doi.org/10.1016/j.conbuildmat.2018.10.113

    Article  Google Scholar 

  87. Zhan BJ, Xuan DX, Zeng W, Poon CS (2019) Carbonation treatment of recycled concrete aggregate: effect on transport properties and steel corrosion of recycled aggregate concrete. Cem Concr Compos 104:103360. https://doi.org/10.1016/j.cemconcomp.2019.103360

    Article  Google Scholar 

  88. Liang C, Lu N, Ma H et al (2020) Carbonation behavior of recycled concrete with CO2-curing recycled aggregate under various environments. J CO2 Util. https://doi.org/10.1016/j.jcou.2020.101185

    Article  Google Scholar 

  89. Hosseini Zadeh A, Mamirov M, Kim S, Hu J (2021) CO2-treatment of recycled concrete aggregates to improve mechanical and environmental properties for unbound applications. Constr Build Mater 275:122180. https://doi.org/10.1016/j.conbuildmat.2020.122180

    Article  Google Scholar 

  90. Suescum-Morales D, Fernández-Rodríguez JM, Jiménez JR (2022) Use of carbonated water to improve the mechanical properties and reduce the carbon footprint of cement-based materials with recycled aggregates. J CO2 Util. https://doi.org/10.1016/j.jcou.2022.101886

    Article  Google Scholar 

  91. Suescum-Morales D, Kalinowska-Wichrowska K, Fernández JM, Jiménez JR (2021) Accelerated carbonation of fresh cement-based products containing recycled masonry aggregates for CO2 sequestration. J CO2 Util. https://doi.org/10.1016/j.jcou.2021.101461

    Article  Google Scholar 

  92. Jang JG, Kim GM, Kim HJ, Lee HK (2016) Review on recent advances in CO2 utilization and sequestration technologies in cement-based materials. Constr Build Mater 127:762–773. https://doi.org/10.1016/j.conbuildmat.2016.10.017

    Article  Google Scholar 

  93. Liu L, Ha J, Hashida T, Teramura S (2001) Development of a CO2 solidification method for recycling autoclaved lightweight concrete waste. J Mater Sci Lett 20:1791–1794. https://doi.org/10.1023/A:1012591318077

    Article  Google Scholar 

  94. Bernal SA, San Nicolas R, Provis JL et al (2014) Natural carbonation of aged alkali-activated slag concretes. Mater Struct 47:693–707. https://doi.org/10.1617/s11527-013-0089-2

    Article  Google Scholar 

  95. Wang J, Xu H, Xu D et al (2019) Accelerated carbonation of hardened cement pastes: influence of porosity. Constr Build Mater 225:159–169. https://doi.org/10.1016/j.conbuildmat.2019.07.088

    Article  Google Scholar 

  96. Lim T, Ellis BR, Skerlos SJ (2019) Mitigating CO 2 emissions of concrete manufacturing through CO 2 -enabled binder reduction. Environ Res Lett 14:114014. https://doi.org/10.1088/1748-9326/ab466e

    Article  Google Scholar 

  97. Zhang N, Duan H, Miller TR et al (2020) Mitigation of carbon dioxide by accelerated sequestration in concrete debris. Renew Sustain Energy Rev 117:109495. https://doi.org/10.1016/j.rser.2019.109495

    Article  Google Scholar 

  98. Xi F, Davis SJ, Ciais P et al (2016) Substantial global carbon uptake by cement carbonation. Nat Geosci 9:880–883. https://doi.org/10.1038/ngeo2840

    Article  Google Scholar 

  99. Galan I, Andrade C, Mora P, Sanjuan MA (2010) Sequestration of CO 2 by concrete carbonation. Environ Sci Technol 44:3181–3186. https://doi.org/10.1021/es903581d

    Article  Google Scholar 

  100. Worrell E, Price L, Martin N et al (2001) Carbon dioxide emissions from the global cement industry. Annu Rev Energy Environ 26:303–329. https://doi.org/10.1146/annurev.energy.26.1.303

    Article  Google Scholar 

  101. Andersson R, Fridh K, Stripple H, Häglund M (2013) Calculating CO 2 uptake for existing concrete structures during and after Service life. Environ Sci Technol 47:11625–11633. https://doi.org/10.1021/es401775w

    Article  Google Scholar 

  102. Cao Z, Myers RJ, Lupton RC et al (2020) The sponge effect and carbon emission mitigation potentials of the global cement cycle. Nat Commun 11:3777. https://doi.org/10.1038/s41467-020-17583-w

    Article  Google Scholar 

  103. Lippiatt N, Ling T-C, Pan S-Y (2020) Towards carbon-neutral construction materials: carbonation of cement-based materials and the future perspective. J Build Eng 28:101062. https://doi.org/10.1016/j.jobe.2019.101062

    Article  Google Scholar 

  104. Andrade C, Sanjuán M (2018) Updating carbon storage capacity of Spanish cements. Sustainability 10:4806. https://doi.org/10.3390/su10124806

    Article  Google Scholar 

  105. He Z, Jia Y, Wang S et al (2019) Maximizing CO2 sequestration in cement-bonded fiberboards through carbonation curing. Constr Build Mater 213:51–60. https://doi.org/10.1016/j.conbuildmat.2019.04.042

    Article  Google Scholar 

  106. Yang K-H, Seo E-A, Tae S-H (2014) Carbonation and CO2 uptake of concrete. Environ Impact Assess Rev 46:43–52. https://doi.org/10.1016/j.eiar.2014.01.004

    Article  Google Scholar 

  107. Senaratne S, Gerace D, Mirza O et al (2016) The costs and benefits of combining recycled aggregate with steel fibres as a sustainable, structural material. J Clean Prod 112:2318–2327. https://doi.org/10.1016/j.jclepro.2015.10.041

    Article  Google Scholar 

  108. Chinda T (2016) Investigation of factors affecting a construction waste recycling decision. Civ Eng Environ Syst 33:214–226. https://doi.org/10.1080/10286608.2016.1161030

    Article  Google Scholar 

  109. Coelho A, de Brito J (2013) Economic viability analysis of a construction and demolition waste recycling plant in Portugal – part I: location, materials, technology and economic analysis. J Clean Prod 39:338–352. https://doi.org/10.1016/j.jclepro.2012.08.024

    Article  Google Scholar 

  110. Coelho A, de Brito J (2013) Economic viability analysis of a construction and demolition waste recycling plant in Portugal – part II: economic sensitivity analysis. J Clean Prod 39:329–337. https://doi.org/10.1016/j.jclepro.2012.05.006

    Article  Google Scholar 

  111. Zhao W, Leeftink RB, Rotter VS (2010) Evaluation of the economic feasibility for the recycling of construction and demolition waste in China—the case of Chongqing. Resour Conserv Recycl 54:377–389. https://doi.org/10.1016/j.resconrec.2009.09.003

    Article  Google Scholar 

  112. Bao Z, Lu W, Chi B et al (2019) Procurement innovation for a circular economy of construction and demolition waste: lessons learnt from Suzhou, China. Waste Manag 99:12–21. https://doi.org/10.1016/j.wasman.2019.08.031

    Article  Google Scholar 

  113. Rao A, Jha KN, Misra S (2007) Use of aggregates from recycled construction and demolition waste in concrete. Resour Conserv Recycl 50:71–81. https://doi.org/10.1016/j.resconrec.2006.05.010

    Article  Google Scholar 

  114. Tanyildizi H (2021) Investigation of carbonation performance of polymer-phosphazene concrete using Taguchi optimization method. Constr Build Mater 273:121673. https://doi.org/10.1016/j.conbuildmat.2020.121673

    Article  Google Scholar 

  115. Law DW, Adam AA, Molyneaux TK et al (2015) Long term durability properties of class F fly ash geopolymer concrete. Mater Struct 48:721–731. https://doi.org/10.1617/s11527-014-0268-9

    Article  Google Scholar 

  116. Goyal A, Pouya HS, Ganjian E, Claisse P (2018) A review of corrosion and protection of steel in concrete. Arab J Sci Eng 43:5035–5055. https://doi.org/10.1007/s13369-018-3303-2

    Article  Google Scholar 

  117. Ravikumar D, Zhang D, Keoleian G et al (2021) Carbon dioxide utilization in concrete curing or mixing might not produce a net climate benefit. Nat Commun 12:855. https://doi.org/10.1038/s41467-021-21148-w

    Article  Google Scholar 

  118. Oyedele LO, Ajayi SO, Kadiri KO (2014) Use of recycled products in UK construction industry: an empirical investigation into critical impediments and strategies for improvement. Resour Conserv Recycl 93:23–31. https://doi.org/10.1016/j.resconrec.2014.09.011

    Article  Google Scholar 

  119. Griggs D, Stafford-Smith M, Gaffney O et al (2013) Sustainable development goals for people and planet. Nature 495:305–307. https://doi.org/10.1038/495305a

    Article  Google Scholar 

  120. Ravetz J, Neuvonen A, Mäntysalo R (2021) The new normative: synergistic scenario planning for carbon-neutral cities and regions. Reg Stud 55:150–163. https://doi.org/10.1080/00343404.2020.1813881

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, N., Xi, B., Li, J. et al. Utilization of CO2 into recycled construction materials: A systematic literature review. J Mater Cycles Waste Manag 24, 2108–2125 (2022). https://doi.org/10.1007/s10163-022-01489-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-022-01489-4

Keywords

Navigation