Skip to main content

Advertisement

Log in

Recapitulating potential environmental and industrial applications of biomass wastes

  • REVIEW
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

The generation of biomass wastes is a huge concern as they have to be properly managed to ensure environmental wellbeing. This article examined biomass waste utilisation as a means of safe management. Furthermore, as sustainable resources with potential applicability to the benefits of environment and mankind. The production of biofuels from biomass wastes and the potential applications of biomass wastes as valuable resources for environmental protection were discussed. In addition, as inexpensive resources for the production of biocatalysts, cementitious and concrete materials, and chemical substances such as antibiotics and aromatic compounds, suitable as materials of high importance in cosmetics, food and diverse chemical industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sauer CO (1947) Early relations of man to plants. Geogr Rev 37(1):1–25

    Article  Google Scholar 

  2. Byrnes BH, Bumb BL (1998) Population growth, food production and nutrient requirements. J Crop Prod 1(2):1–27

    Article  Google Scholar 

  3. Saha A, Basak BB (2020) Scope of value addition and utilization of residual biomass from medicinal and aromatic plants. Ind Crops Prod 145:111979. https://doi.org/10.1016/j.indcrop.2019.111979

    Article  Google Scholar 

  4. The World Bank (2018) Trends in solid waste management. The World Bank. https://datatopics.worldbank.org/what-a-waste/trends_in_solid_waste_management.html#:~:text=The%20world%20generates%202.01%20billion,from%200.11%20to%204.54%20kilograms. Accessed 15 Jan 2022

  5. Zafar S (2009) Biomass wastes. ALTENERGYMAG. https://www.altenergymag.com/article/2009/08/biomass-wastes/530/. Accessed 15 Jan 2022

  6. Richter A, Ng KTW, Karimi N, Chang W (2021) Developing a novel proximity analysis approach for assessment of waste management cost efficiency in low population density regions. Sustain Cities Soc 65:102583

    Article  Google Scholar 

  7. Sharma BK, Chandel MK (2021) Life cycle cost analysis of municipal solid waste management scenarios for Mumbai, India. Waste Manag 124:293–302

    Article  Google Scholar 

  8. Krystosik A, Njoroge G, Odhiambo L, Forsyth JE, Mutuku F, LaBeaud AD (2020) Solid wastes provide breeding sites, burrows, and food for biological disease vectors, and urban zoonotic reservoirs: a call to action for solutions-based research. Front Public Health 7:405

    Article  Google Scholar 

  9. Chew KW, Chia SR, Yen H-W, Nomanbhay S, Ho Y-C, Show PL (2019) Transformation of biomass waste into sustainable organic fertilizers. Sustainability 11(8):2266

    Article  Google Scholar 

  10. Nguyen H, Jamali Moghadam M, Moayedi H (2019) Agricultural wastes preparation, management, and applications in civil engineering: a review. J Mater Cycles Waste Manag 21(5):1039–1051. https://doi.org/10.1007/s10163-019-00872-y

    Article  Google Scholar 

  11. Gupta R, Pandit C, Pandit S, Gupta PK, Lahiri D, Agarwal D, Pandey S (2022) Potential and future prospects of biochar-based materials and their applications in removal of organic contaminants from industrial wastewater. J Mater Cycles Waste Manag 24(3):852–876. https://doi.org/10.1007/s10163-022-01391-z

    Article  Google Scholar 

  12. Jidrada P, Sua-iam G, Chatveera B, Makul N (2016) Recycling of combined coal-biomass ash from electric power plant waste as a cementitious material: characteristics and improvement. J Mater Cycles Waste Manag 18(3):527–540. https://doi.org/10.1007/s10163-014-0349-4

    Article  Google Scholar 

  13. Prasartkaew B, Sukpancharoen S (2021) An experimental investigation on a novel direct-fired porous boiler for the low-pressure steam applications. Case Stud Therm Eng 28:101454

    Article  Google Scholar 

  14. Nathaniel SP, Alam M, Murshed M, Mahmood H, Ahmad P (2021) Is energy diversification through enhancing nuclear and renewable energy consumptions effective in abating carbon dioxide emissions in the G7 countries? Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-13728-6

    Article  Google Scholar 

  15. Durak H (2016) Pyrolysis of Xanthium strumarium in a fixed bed reactor: Effects of boron catalysts and pyrolysis parameters on product yields and character. Energy Sources, Part A: Recover, Util Environ Eff 38(10):1400–1409. https://doi.org/10.1080/15567036.2014.947446

    Article  Google Scholar 

  16. Raheem A, Wan Azlina WAKG, Taufiq Yap YH, Danquah MK, Harun R (2015) Thermochemical conversion of microalgal biomass for biofuel production. Renew Sustain Energy Rev 49:990–999. https://doi.org/10.1016/j.rser.2015.04.186

    Article  Google Scholar 

  17. USDA (2017) What is pyrolysis? https://www.ars.usda.gov/northeast-area/wyndmoor-pa/eastern-regional-research-center/docs/biomass-pyrolysis-research-1/what-is-pyrolysis/. Accessed 3 June 2022

  18. Chen H, Wang L (2016) Technologies for biochemical conversion of biomass. Academic Press

    Google Scholar 

  19. Zheng Y, Zhao J, Xu F, Li Y (2014) Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog Energy Combust Sci 42:35–53

    Article  Google Scholar 

  20. Szczodrak J, Fiedurek J (1996) Technology for conversion of lignocellulosic biomass to ethanol. Biomass Bioenerg 10(5–6):367–375

    Article  Google Scholar 

  21. Choi H, Kim J, Pak D (2014) Comparison of pretreatment of fallen leaves for application evaluation by bio-ethanol raw material. J Energy Eng 23(3):241–246

    Article  Google Scholar 

  22. Wayman M, Chen S, Doan K (1992) Bioconversion of waste paper to ethanol. Process Biochem 27(4):239–245

    Article  Google Scholar 

  23. Singh A, Bajar S, Bishnoi NR (2014) Enzymatic hydrolysis of microwave alkali pretreated rice husk for ethanol production by Saccharomyces cerevisiae, Scheffersomyces stipitis and their co-culture. Fuel 116:699–702

    Article  Google Scholar 

  24. Bader NB, Germec M, Turhan I (2021) Ethanol production from different medium compositions of rice husk hydrolysate by using Scheffersomyces stipitis in a repeated-batch biofilm reactor and its modeling. Process Biochem 100:26–38

    Article  Google Scholar 

  25. Zhu J-Q, Zong Q-J, Li W-C, Chai M-Z, Xu T, Liu H, Fan H, Li B-Z, Yuan Y-J (2020) Temperature profiled simultaneous saccharification and co-fermentation of corn stover increases ethanol production at high solid loading. Energy Convers Manag 205:112344

    Article  Google Scholar 

  26. Qiu J, Tian D, Shen F, Hu J, Zeng Y, Yang G, Zhang Y, Deng S, Zhang J (2018) Bioethanol production from wheat straw by phosphoric acid plus hydrogen peroxide (PHP) pretreatment via simultaneous saccharification and fermentation (SSF) at high solid loadings. Biores Technol 268:355–362

    Article  Google Scholar 

  27. Cotana F, Cavalaglio G, Gelosia M, Coccia V, Petrozzi A, Nicolini A (2014) Effect of double-step steam explosion pretreatment in bioethanol production from softwood. Appl Biochem Biotechnol 174(1):156–167

    Article  Google Scholar 

  28. Chu Q, Wang R, Tong W, Jin Y, Hu J, Song K (2020) Improving enzymatic saccharification and ethanol production from hardwood by deacetylation and steam pretreatment: insight into mitigating lignin inhibition. ACS Sustain Chem Eng 8(49):17967–17978

    Article  Google Scholar 

  29. Wu Y, Ji H, Ji X, Tian Z, Chen J (2020) Fibrillating wood chips to facilitate high-valued lignin extraction and high titer ethanol production. Ind Crops Prod 146:112153

    Article  Google Scholar 

  30. Tsai MH, Lee WC, Kuan WC, Sirisansaneeyakul S, Savarajara A (2018) Evaluation of different pretreatments of Napier grass for enzymatic saccharification and ethanol production. Energy Sci Eng 6(6):683–692

    Article  Google Scholar 

  31. Bernal MP, Sommer SG, Chadwick D, Qing C, Guoxue L, Michel FC Jr (2017) Current approaches and future trends in compost quality criteria for agronomic, environmental, and human health benefits. Advances in agronomy, vol 144. Elsevier, pp 143–233

    Google Scholar 

  32. Miah MR, Rahman AKML, Akanda MR, Pulak A, Rouf MA (2016) Production of biogas from poultry litter mixed with the co-substrate cow dung. J Taibah Univ Sci 10(4):497–504

    Article  Google Scholar 

  33. Gohil A, Budholiya S, Mohan CG, Prakash R (2021) Utilization of poultry waste as a source of biogas production. Mater Today: Proc 45:783–787. https://doi.org/10.1016/j.matpr.2020.02.807

    Article  Google Scholar 

  34. Hussien FM, Hamad AJ, Faraj JJ (2020) Impact of adding cow dung with different ratios on anaerobic co-digestion of waste food for biogas production. J Mech Eng Res Dev 43(7):213–221

    Google Scholar 

  35. Singh S, Hariteja N, Sharma S, Raju NJ, Prasad TJR (2021) Production of biogas from human faeces mixed with the co-substrate poultry litter and cow dung. Environ Technol Innov 23:101551. https://doi.org/10.1016/j.eti.2021.101551

    Article  Google Scholar 

  36. Almomani F, Bhosale RR (2020) Enhancing the production of biogas through anaerobic co-digestion of agricultural waste and chemical pre-treatments. Chemosphere 255:126805

    Article  Google Scholar 

  37. Surra E, Bernardo M, Lapa N, Esteves I, Fonseca I, Mota J (2018) Enhanced biogas production through anaerobic co-digestion of ofmsw with maize cob waste pre-treated with hydrogen peroxide. Chem Eng Trans 65:121–126

    Google Scholar 

  38. Elsayed M, Diab A, Soliman M (2021) Methane production from anaerobic co-digestion of sludge with fruit and vegetable wastes: effect of mixing ratio and inoculum type. Biomass Conv Bioref 11(3):989–998. https://doi.org/10.1007/s13399-020-00785-z

    Article  Google Scholar 

  39. Sitorus B, Sukandar PSD (2013) Biogas recovery from anaerobic digestion process of mixed fruit -vegetable wastes. Energy Proc 32:176–182. https://doi.org/10.1016/j.egypro.2013.05.023

    Article  Google Scholar 

  40. Deressa L, Libsu S, Chavan R, Manaye D, Dabassa A (2015) Production of biogas from fruit and vegetable wastes mixed with different wastes. Environ Ecol Res 3(3):65–71

    Article  Google Scholar 

  41. Yilmaz N (2012) Comparative analysis of biodiesel-ethanol-diesel and biodiesel-methanol-diesel blends in a diesel engine. Energy 40:210–213

    Article  Google Scholar 

  42. Adaileh WM, AlQdah KS (2012) Performance of diesel engine fuelled by a biodiesel extracted from a waste cocking oil. Energy Proc 18:1317–1334

    Article  Google Scholar 

  43. Rajalingam A, Jani S, Kumar AS, Khan MA (2016) Production methods of biodiesel. J Chem Pharm Res 8(3):170–173

    Google Scholar 

  44. Melero J, Sánchez-Vázquez R, Vasiliadou I, Castillejo FM, Bautista L, Iglesias J, Morales G, Molina R (2015) Municipal sewage sludge to biodiesel by simultaneous extraction and conversion of lipids. Energy Convers Manag 103:111–118

    Article  Google Scholar 

  45. Elkady M, Zaatout A, Balbaa O (2015) Production of biodiesel from waste vegetable oil via KM micromixer. J Chem. https://doi.org/10.1155/2015/630168

    Article  Google Scholar 

  46. Carmona-Cabello M, Sáez-Bastante J, Pinzi S, Dorado M (2019) Optimization of solid food waste oil biodiesel by ultrasound-assisted transesterification. Fuel 255:115817

    Article  Google Scholar 

  47. Arumugamurthy SS, Sivanandi P, Pandian S, Choksi H, Subramanian D (2019) Conversion of a low value industrial waste into biodiesel using a catalyst derived from brewery waste: an activation and deactivation kinetic study. Waste Manag 100:318–326

    Article  Google Scholar 

  48. Bhatti HN, Hanif MA, Qasim M (2008) Biodiesel production from waste tallow. Fuel 87(13–14):2961–2966

    Article  Google Scholar 

  49. Hoque ME, Singh A, Chuan YL (2011) Biodiesel from low cost feedstocks: the effects of process parameters on the biodiesel yield. Biomass Bioenerg 35(4):1582–1587

    Article  Google Scholar 

  50. Cardoso LdC, Almeida FNCd, Souza GK, Asanome IY, Pereira NC (2019) Synthesis and optimization of ethyl esters from fish oil waste for biodiesel production. Renew Energy 133:743–748. https://doi.org/10.1016/j.renene.2018.10.081

    Article  Google Scholar 

  51. Kawentar WA, Budiman A (2013) Synthesis of biodiesel from second-used cooking oil. Energy Proc 32:190–199

    Article  Google Scholar 

  52. Sahar SS, Iqbal J, Ullah I, Bhatti HN, Nouren S, Habib-ur-Rehman NJ, Iqbal M (2018) Biodiesel production from waste cooking oil: an efficient technique to convert waste into biodiesel. Sustain Cities Soc 41:220–226

    Article  Google Scholar 

  53. Tahvildari K, Anaraki YN, Fazaeli R, Mirpanji S, Delrish E (2015) The study of CaO and MgO heterogenic nano-catalyst coupling on transesterification reaction efficacy in the production of biodiesel from recycled cooking oil. J Environ Health Sci Eng 13(1):1–9

    Article  Google Scholar 

  54. Chen K-T, Wang J-X, Dai Y-M, Wang P-H, Liou C-Y, Nien C-W, Wu J-S, Chen C-C (2013) Rice husk ash as a catalyst precursor for biodiesel production. J Taiwan Inst Chem Eng 44(4):622–629. https://doi.org/10.1016/j.jtice.2013.01.006

    Article  Google Scholar 

  55. Birla A, Singh B, Upadhyay SN, Sharma YC (2012) Kinetics studies of synthesis of biodiesel from waste frying oil using a heterogeneous catalyst derived from snail shell. Biores Technol 106:95–100. https://doi.org/10.1016/j.biortech.2011.11.065

    Article  Google Scholar 

  56. Shu Q, Gao J, Nawaz Z, Liao Y, Wang D, Wang J (2010) Synthesis of biodiesel from waste vegetable oil with large amounts of free fatty acids using a carbon-based solid acid catalyst. Appl Energy 87(8):2589–2596. https://doi.org/10.1016/j.apenergy.2010.03.024

    Article  Google Scholar 

  57. Ives A (1999) Love canal In: The market meets the environment. Rowman & Littlefield, pp 37–57

  58. Hachiya N (2006) The history and the present of Minamata disease. Jpn Med Assoc J 49:112–118

    Google Scholar 

  59. Cullinan P (2009) Case study of the Bhopal incident. Environ Toxicol Hum Health-Vol I:81

    Google Scholar 

  60. EPA (2021) National pollutant discharge elimination system (NPDES): Industrial Wastewater. https://www.epa.gov/npdes/industrial-wastewater. Accessed 28 Nov 2021

  61. Kaur R, Wani S, Singh A, Lal K (2012) Wastewater production, treatment and use in India. In: National report presented at the 2nd regional workshop on safe use of wastewater in agriculture. pp 1–13

  62. Myers PD (2018) Activated carbon air filters: everything you need to know. https://molekule.science/activated-carbon-air-filter/. Accessed 28 November 2021

  63. Vizzarri M, Pilli R, Korosuo A, Frate L, Grassi G (2022) The role of forests in climate change mitigation: the EU context. Climate-smart forestry in mountain regions. Springer, Cham, pp 507–520

    Chapter  Google Scholar 

  64. Carus M, Dammer L, Raschka A, Skoczinski P, vom Berg C (2020) Renewable carbon-key to a sustainable and future-oriented chemical and plastic industry. Nova Institute, Hürth, Germany

    Google Scholar 

  65. Liu W-J, Jiang H, Yu H-Q (2015) Development of biochar-based functional materials: toward a sustainable platform carbon material. Chem Rev 115(22):12251–12285. https://doi.org/10.1021/acs.chemrev.5b00195

    Article  Google Scholar 

  66. Yang X-B, Ying G-G, Peng P-A, Wang L, Zhao J-L, Zhang L-J, Yuan P, He H-P (2010) Influence of biochars on plant uptake and dissipation of two pesticides in an agricultural soil. J Agric Food Chem 58(13):7915–7921

    Article  Google Scholar 

  67. Kalderis D, Bethanis S, Paraskeva P, Diamadopoulos E (2008) Production of activated carbon from bagasse and rice husk by a single-stage chemical activation method at low retention times. Biores Technol 99(15):6809–6816

    Article  Google Scholar 

  68. Azevedo DC, Araújo JCS, Bastos-Neto M, Torres AEB, Jaguaribe EF, Cavalcante CL (2007) Microporous activated carbon prepared from coconut shells using chemical activation with zinc chloride. Microporous Mesoporous Mater 100(1–3):361–364

    Article  Google Scholar 

  69. Foo K, Hameed B (2011) Utilization of rice husks as a feedstock for preparation of activated carbon by microwave induced KOH and K2CO3 activation. Biores Technol 102(20):9814–9817

    Article  Google Scholar 

  70. Li Y, Zhang X, Yang R, Li G, Hu C (2015) The role of H3PO4 in the preparation of activated carbon from NaOH-treated rice husk residue. RSC Adv 5(41):32626–32636

    Article  Google Scholar 

  71. Sugashini S, Begum KMMS (2015) Preparation of activated carbon from carbonized rice husk by ozone activation for Cr (VI) removal. New Carbon Mater 30(3):252–261

    Article  Google Scholar 

  72. Juan Y, Ke-Qiang Q (2009) Preparation of activated carbon by chemical activation under vacuum. Environ Sci Technol 43(9):3385–3390

    Article  Google Scholar 

  73. Baccar R, Bouzid J, Feki M, Montiel A (2009) Preparation of activated carbon from Tunisian olive-waste cakes and its application for adsorption of heavy metal ions. J Hazard Mater 162(2–3):1522–1529. https://doi.org/10.1016/j.jhazmat.2008.06.041

    Article  Google Scholar 

  74. Tongpoothorn W, Sriuttha M, Homchan P, Chanthai S, Ruangviriyachai C (2011) Preparation of activated carbon derived from Jatropha curcas fruit shell by simple thermo-chemical activation and characterization of their physico-chemical properties. Chem Eng Res Des 89(3):335–340

    Article  Google Scholar 

  75. Foo K, Hameed B (2012) Mesoporous activated carbon from wood sawdust by K2CO3 activation using microwave heating. Biores Technol 111:425–432

    Article  Google Scholar 

  76. Osman AI, Blewitt J, Abu-Dahrieh JK, Farrell C, Ala’a H, Harrison J, Rooney DW (2019) Production and characterisation of activated carbon and carbon nanotubes from potato peel waste and their application in heavy metal removal. Environ Sci Pollut Res 26(36):37228–37241

    Article  Google Scholar 

  77. Allwar A, Hartati R, Fatimah I (2017) Effect of nitric acid treatment on activated carbon derived from oil palm shell. In: AIP conference proceedings. vol 1. AIP Publishing LLC, p 020129

  78. Fernandez ME, Nunell GV, Bonelli PR, Cukierman AL (2014) Activated carbon developed from orange peels: batch and dynamic competitive adsorption of basic dyes. Ind Crops Prod 62:437–445

    Article  Google Scholar 

  79. Fahmi A, Abidin Z, Kusmana C, Kharisma D, Prajaputra V, Rahmawati W (2019) Preparation and characterization of activated carbon from palm kernel shell at low temperature as an adsorbent for methylene blue. In: IOP conference series: earth and environmental science. vol 1. IOP Publishing, p 012015

  80. Sulaiman NS, Hashim R, Mohamad Amini MH, Danish M, Sulaiman O (2018) Optimization of activated carbon preparation from cassava stem using response surface methodology on surface area and yield. J Clean Prod 198:1422–1430. https://doi.org/10.1016/j.jclepro.2018.07.061

    Article  Google Scholar 

  81. Zhou J, Luo A, Zhao Y (2018) Preparation and characterisation of activated carbon from waste tea by physical activation using steam. J Air Waste Manag Assoc 68(12):1269–1277. https://doi.org/10.1080/10962247.2018.1460282

    Article  Google Scholar 

  82. Leng L, Huang H, Li H, Li J, Zhou W (2019) Biochar stability assessment methods: a review. Sci Total Environ 647:210–222

    Article  Google Scholar 

  83. UNEP (2020) Soil pollution a risk to our health and food security. UNEP. https://www.unep.org/news-and-stories/story/soil-pollution-risk-our-health-and-food-security. Accessed 15 Jan 2022

  84. Hou D, O’Connor D, Igalavithana AD, Alessi DS, Luo J, Tsang DC, Sparks DL, Yamauchi Y, Rinklebe J, Ok YS (2020) Metal contamination and bioremediation of agricultural soils for food safety and sustainability. Nat Rev Earth Environ 1(7):366–381

    Article  Google Scholar 

  85. Ren J, Wang X, Wang C, Gong P, Wang X, Yao T (2017) Biomagnification of persistent organic pollutants along a high-altitude aquatic food chain in the Tibetan Plateau: processes and mechanisms. Environ Pollut 220:636–643

    Article  Google Scholar 

  86. Tomczyk A, Sokołowska Z, Boguta P (2020) Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Rev Environ Sci Bio/Technol 19(1):191–215

    Article  Google Scholar 

  87. Sizmur T, Quilliam R, Puga AP, Moreno-Jiménez E, Beesley L, Gomez-Eyles JL (2016) Application of biochar for soil remediation. Agric Environ Appl Biochar: Adv Barriers 63:296

    Google Scholar 

  88. Fellet G, Marchiol L, Delle Vedove G, Peressotti A (2011) Application of biochar on mine tailings: effects and perspectives for land reclamation. Chemosphere 83(9):1262–1267

    Article  Google Scholar 

  89. Park JH, Choppala GK, Bolan NS, Chung JW, Chuasavathi T (2011) Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil 348(1):439–451

    Article  Google Scholar 

  90. Mendez A, Gomez A, Paz-Ferreiro J, Gasco G (2012) Effects of sewage sludge biochar on plant metal availability after application to a Mediterranean soil. Chemosphere 89(11):1354–1359

    Article  Google Scholar 

  91. Jiang J, Xu R-k, Jiang T-y, Li Z (2012) Immobilization of Cu (II), Pb (II) and Cd (II) by the addition of rice straw derived biochar to a simulated polluted ultisol. J Hazard Mater 229:145–150

    Article  Google Scholar 

  92. Sneath HE, Hutchings TR, de Leij FAAM (2013) Assessment of biochar and iron filing amendments for the remediation of a metal, arsenic and phenanthrene co-contaminated spoil. Environ Pollut 178:361–366. https://doi.org/10.1016/j.envpol.2013.03.009

    Article  Google Scholar 

  93. Zheng R, Chen Z, Cai C, Tie B, Liu X, Reid BJ, Huang Q, Lei M, Sun G, Baltrėnaitė E (2015) Mitigating heavy metal accumulation into rice (Oryza sativa L.) using biochar amendment—a field experiment in Hunan, China. Environ Sci Pollut Res 22(14):11097–11108

    Article  Google Scholar 

  94. Zhang Y, Chen T, Liao Y, Reid BJ, Chi H, Hou Y, Cai C (2016) Modest amendment of sewage sludge biochar to reduce the accumulation of cadmium into rice (Oryza sativa L.): a field study. Environ Pollut 216:819–825

    Article  Google Scholar 

  95. Rombolà AG, Fabbri D, Baronti S, Vaccari FP, Genesio L, Miglietta F (2019) Changes in the pattern of polycyclic aromatic hydrocarbons in soil treated with biochar from a multiyear field experiment. Chemosphere 219:662–670

    Article  Google Scholar 

  96. Bielská L, Škulcová L, Neuwirthová N, Cornelissen G, Hale SE (2018) Sorption, bioavailability and ecotoxic effects of hydrophobic organic compounds in biochar amended soils. Sci Total Environ 624:78–86

    Article  Google Scholar 

  97. Li H, Dong X, da Silva EB, de Oliveira LM, Chen Y, Ma LQ (2017) Mechanisms of metal sorption by biochars: biochar characteristics and modifications. Chemosphere 178:466–478

    Article  Google Scholar 

  98. Yu Y-q, Li J-x, Liao Y-l, Yang J-y (2020) Effectiveness, stabilization, and potential feasible analysis of a biochar material on simultaneous remediation and quality improvement of vanadium contaminated soil. J Clean Prod 277:123506. https://doi.org/10.1016/j.jclepro.2020.123506

    Article  Google Scholar 

  99. Sakhuja D, Ghai H, Rathour RK, Kumar P, Bhatt AK, Bhatia RK (2021) Cost-effective production of biocatalysts using inexpensive plant biomass: a review. 3 Biotech 11(6):1–21

    Article  Google Scholar 

  100. Falade AO, Mabinya LV, Okoh AI, Nwodo UU (2020) Agroresidues enhanced peroxidase activity expression by Bacillus sp. MABINYA-1 under submerged fermentation. Biores Bioprocess 7(1):1–9

    Article  Google Scholar 

  101. Kuhad R, Gupta R, Singh A (2011) Microbial cellulases and their industrial applications. Enzyme Res 2011:280696

    Article  Google Scholar 

  102. Liu D, Zhang R, Yang X, Wu H, Xu D, Tang Z, Shen Q (2011) Thermostable cellulase production of Aspergillus fumigatus Z5 under solid-state fermentation and its application in degradation of agricultural wastes. Int Biodeterior Biodegrad 65(5):717–725

    Article  Google Scholar 

  103. Gautam S, Bundela P, Pandey A, Khan J, Awasthi M, Sarsaiya S (2011) Optimization for the production of cellulase enzyme from municipal solid waste residue by two novel cellulolytic fungi. Biotechnol Res Int. https://doi.org/10.4061/2011/810425

    Article  Google Scholar 

  104. Bajaj BK, Sharma M, Rao RS (2014) Agricultural residues for production of cellulase from Sporotrichum thermophile LAR5 and its application for saccharification of rice straw. J Mater Environ Sci 5(5):1454–1460

    Google Scholar 

  105. Annamalai N, Rajeswari MV, Balasubramanian T (2014) Enzymatic saccharification of pretreated rice straw by cellulase produced from Bacillus carboniphilus CAS 3 utilizing lignocellulosic wastes through statistical optimization. Biomass Bioenerg 68:151–160

    Article  Google Scholar 

  106. Waghmare P, Kshirsagar S, Saratale R, Govindwar S, Saratale G (2014) Production and characterization of cellulolytic enzymes by isolated Klebsiella sp. PRW-1 using agricultural waste biomass. Emir J Food Agric 26:44–59

    Article  Google Scholar 

  107. Neelkant KS, Shankar K, Jayalakshmi S, Sreeramulu K (2019) Optimization of conditions for the production of lignocellulolytic enzymes by Sphingobacterium sp. ksn-11 utilizing agro-wastes under submerged condition. Prep Biochem Biotechnol 49(9):927–934

    Article  Google Scholar 

  108. Olajuyigbe FM, Ogunyewo OA (2016) Enhanced production and physicochemical properties of thermostable crude cellulase from Sporothrix carnis grown on corn cob. Biocatal Agric Biotechnol 7:110–117

    Article  Google Scholar 

  109. Jisha VN, Smitha RB, Pradeep S, Sreedevi S, Unni KN, Sajith S, Priji P, Josh MS, Benjamin S (2013) Versatility of microbial proteases. Adv Enzym Res 1(3):39–51

    Article  Google Scholar 

  110. Vijayaraghavan P, Vincent SGP (2014) Statistical optimization of fibrinolytic enzyme production using agroresidues by Bacillus cereus IND1 and its thrombolytic activity in vitro. Biomed Res Int 2014:725064. https://doi.org/10.1155/2014/725064

    Article  Google Scholar 

  111. Chimbekujwo KI, Ja’afaru MI, Adeyemo OM (2020) Purification, characterization and optimization conditions of protease produced by Aspergillus brasiliensis strain BCW2. Sci Afr 8:e00398

    Google Scholar 

  112. de Castro RJS, Soares MH, Albernaz JRM, Sato HH (2016) Biochemical characterization of solvent, salt, surfactant and oxidizing agent tolerant proteases from Aspergillus niger produced in different agroindustrial wastes. Biocatal Agric Biotechnol 5:94–98

    Article  Google Scholar 

  113. Kandasamy S, Muthusamy G, Balakrishnan S, Duraisamy S, Thangasamy S, Seralathan K-K, Chinnappan S (2016) Optimization of protease production from surface-modified coffee pulp waste and corncobs using Bacillus sp. by SSF. 3 Biotech 6(2):1–11

    Article  Google Scholar 

  114. Sathishkumar R, Ananthan G, Arun J (2015) Production, purification and characterization of alkaline protease by ascidian associated Bacillus subtilis GA CAS8 using agricultural wastes. Biocatal Agric Biotechnol 4(2):214–220

    Article  Google Scholar 

  115. Sethi BK, Jana A, Nanda PK, Mohapatra PKD, Sahoo SL (2016) Thermostable acidic protease production in Aspergillus terreus NCFT 4269.10 using chickling vetch peels. J Taibah Univ Sci 10(4):571–583

    Article  Google Scholar 

  116. Bhat MK (2000) Cellulases and related enzymes in biotechnology. Biotechnol Adv 18(5):355–383

    Article  Google Scholar 

  117. Bandikari R, Poondla V, Obulam VSR (2014) Enhanced production of xylanase by solid state fermentation using Trichoderma koeningi isolate: effect of pretreated agro-residues. 3 Biotech 4(6):655–664

    Article  Google Scholar 

  118. Ho H (2015) Xylanase production by Bacillus subtilis using carbon source of inexpensive agricultural wastes in two different approaches of submerged fermentation (SmF) and solid state fermentation (SsF). J Food Process Technol 6(4):437

    Google Scholar 

  119. Izidoro SC, Knob A (2014) Production of xylanases by an Aspergillus niger strain in wastes grain. Acta Sci Biol Sci 36(3):313–319

    Article  Google Scholar 

  120. Adhyaru DN, Bhatt NS, Modi HA (2015) Optimization of upstream and downstream process parameters for cellulase-poor-thermo-solvent-stable xylanase production and extraction by Aspergillus tubingensis FDHN1. Bioresour Bioprocess 2(1):1–14

    Article  Google Scholar 

  121. Herculano PN, Moreira KA, Bezerra RP, Porto TS, de Souza-Motta CM, Porto ALF (2016) Potential application of waste from castor bean (Ricinus communis L.) for production for xylanase of interest in the industry. 3 Biotech 6(2):1–10

    Article  Google Scholar 

  122. Ho HL, Chinonso AM (2016) Overproduction of xylanase from mutants of Bacillus subtilis with barley husk as the prime carbon source under submerged fermentation after random mutagenesis using ethyl methane sulfonate (EMS) and acridine orange (AO). Microbiol Res J Int 14:1–17

    Google Scholar 

  123. Atalla SM, Ahmed NE, Awad HM, El Gamal NG, El Shamy AR (2020) Statistical optimization of xylanase production, using different agricultural wastes by Aspergillus oryzae MN894021, as a biological control of faba bean root diseases. Egypt J Biol Pest Control 30(1):1–12

    Article  Google Scholar 

  124. Bibi Z, Ansari A, Zohra RR, Aman A, Ul Qader SA (2014) Production of xylan degrading endo-1, 4-β-xylanase from thermophilic Geobacillus stearothermophilus KIBGE-IB29. J Radiat Res Appl Sci 7(4):478–485

    Article  Google Scholar 

  125. Beniwal V, Bhan-Khar AK, Sharma J, Chhokar V (2013) Recent advances in industrial application of tannases: a review. Recent Pat Biotechnol. https://doi.org/10.2174/18722083113076660013

    Article  Google Scholar 

  126. de Lima JS, Cruz R, Fonseca JC, Medeiros EVD, Maciel MDHC, Moreira KA, Motta CMDS (2014) Production, characterization of tannase from Penicillium montanense URM 6286 under SSF using agroindustrial wastes, and application in the clarification of grape juice (Vitis vinifera L.). Sci World J 2014:182025. https://doi.org/10.1155/2014/182025

    Article  Google Scholar 

  127. Kumar M, Singh A, Beniwal V, Salar RK (2016) Improved production of tannase by Klebsiella pneumoniae using Indian gooseberry leaves under submerged fermentation using Taguchi approach. AMB Express 6(1):1–11

    Article  Google Scholar 

  128. Madeira JV Jr, Ferreira LR, Macedo JA, Macedo GA (2015) Efficient tannase production using Brazilian citrus residues and potential application for orange juice valorization. Biocatal Agric Biotechnol 4(1):91–97

    Article  Google Scholar 

  129. Wu C, Zhang F, Li L, Jiang Z, Ni H, Xiao A (2018) Novel optimization strategy for tannase production through a modified solid-state fermentation system. Biotechnol Biofuels 11(1):1–15

    Article  Google Scholar 

  130. Mansor A, Ramli M, Rashid NA, Samat N, Lani M, Sharifudin S, Raseetha S (2019) Evaluation of selected agri-industrial residues as potential substrates for enhanced tannase production via solid-state fermentation. Biocatal Agric Biotechnol 20:101216

    Article  Google Scholar 

  131. Lekshmi R, Nisha SA, Kaleeswaran B, Alfarhan A (2020) Pomegranate peel is a low-cost substrate for the production of tannase by Bacillus velezensis TA3 under solid state fermentation. J King Saud Univ-Sci 32(3):1831–1837

    Article  Google Scholar 

  132. Khatami SH, Vakili O, Movahedpour A, Ghesmati Z, Ghasemi H, Taheri-Anganeh M (2022) Laccase: various types and applications. Biotechnol Appl Biochem. https://doi.org/10.1002/bab.2313

    Article  Google Scholar 

  133. Muthukumarasamy NP, Jackson B, Joseph Raj A, Sevanan M (2015) Production of extracellular laccase from Bacillus subtilis MTCC 2414 using agroresidues as a potential substrate. Biochem Res Int. https://doi.org/10.1155/2015/765190

    Article  Google Scholar 

  134. Ćilerdžić J, Stajić M, Vukojević J (2016) Degradation of wheat straw and oak sawdust by Ganoderma applanatum. Int Biodeterior Biodegrad 114:39–44

    Article  Google Scholar 

  135. Thiribhuvanamala G, Kalaiselvi G, Parthasarathy S, Anusha B (2017) Induction of lignolytic enzyme activities in different agro residues by the white rot fungi, Pleurotus sajar-caju. Int J Chem Stud 5(2):89–94

    Google Scholar 

  136. Unuofin JO, Okoh AI, Nwodo UU (2019) Maize stover as a feedstock for enhanced laccase production by two gammaproteobacteria: a solution to agroindustrial waste stockpiling. Ind Crops Prod 129:611–623

    Article  Google Scholar 

  137. Bagewadi ZK, Mulla SI, Ninnekar HZ (2017) Optimization of laccase production and its application in delignification of biomass. Int J Recycl Org Waste Agric 6(4):351–365

    Article  Google Scholar 

  138. Sharma A, Jain KK, Srivastava A, Shrivastava B, Thakur VV, Jain R, Kuhad R (2019) Potential of in situ SSF laccase produced from Ganoderma lucidum RCK 2011 in biobleaching of paper pulp. Bioprocess Biosyst Eng 42(3):367–377

    Article  Google Scholar 

  139. Lonappan L, Rouissi T, Laadila MA, Brar SK, Hernandez Galan L, Verma M, Surampalli RY (2017) Agro-industrial-produced laccase for degradation of diclofenac and identification of transformation products. ACS Sustain Chem Eng 5(7):5772–5781

    Article  Google Scholar 

  140. Kumar A, Singh AK, Bilal M, Chandra R (2021) Sustainable production of thermostable laccase from agro-residues waste by Bacillus aquimaris AKRC02. Catalysis Lett 152:1–17

    Google Scholar 

  141. Houde A, Kademi A, Leblanc D (2004) Lipases and their industrial applications. Appl Biochem Biotechnol 118(1):155–170

    Article  Google Scholar 

  142. Mazhar H, Abbas N, Hussain Z, Sohail A, Ali S (2016) Extracellular lipase production from Bacillus subtilis using agro-industrial waste and fruit peels. Punjab Univ J Zool 31(2):261–267

    Google Scholar 

  143. Salihu A, Bala M, Alam MZ (2016) Lipase production by Aspergillus niger using sheanut cake: an optimization study. J Taibah Univ Sci 10(6):850–859

    Article  Google Scholar 

  144. Putri DN, Khootama A, Perdani MS, Utami TS, Hermansyah H (2020) Optimization of Aspergillus niger lipase production by solid state fermentation of agro-industrial waste. Energy Rep 6:331–335

    Article  Google Scholar 

  145. Mohan SV, Nikhil G, Chiranjeevi P, Reddy CN, Rohit M, Kumar AN, Sarkar O (2016) Waste biorefinery models towards sustainable circular bioeconomy: critical review and future perspectives. Biores Technol 215:2–12

    Article  Google Scholar 

  146. Sagar N, Pareek S, Sharma S, Yahia E, Lobo M (2018) Fruit and vegetable waste: bioactive compounds, their extraction, and possible utilization. Compr Rev Food Sci Food Saf 17:512–531

    Article  Google Scholar 

  147. Christen P, Meza J, Revah S (1997) Fruity aroma production in solid state fermentation by Ceratocystis fimbriata: influence of the substrate type and the presence of precursors. Mycol Res 101(8):911–919

    Article  Google Scholar 

  148. Mantzouridou FT, Paraskevopoulou A, Lalou S (2015) Yeast flavour production by solid state fermentation of orange peel waste. Biochem Eng J 101:1–8

    Article  Google Scholar 

  149. Lalou S, Mantzouridou F, Paraskevopoulou A, Bugarski B, Levic S, Nedovic V (2013) Bioflavour production from orange peel hydrolysate using immobilized Saccharomyces cerevisiae. Appl Microbiol Biotechnol 97(21):9397–9407. https://doi.org/10.1007/s00253-013-5181-6

    Article  Google Scholar 

  150. Ji L, Srzednicki G (2013) Extraction of aromatic compounds from banana peels. In: II Southeast Asia symposium on quality management in postharvest systems 1088. ISHS Acta Horticulturae, pp 541–546

  151. Güneşer O, Demirkol A, Karagül Yüceer Y, Özmen Toğay S, İşleten Hoşoğlu M, Elibol M (2015) Bioflavour production from tomato and pepper pomaces by Kluyveromyces marxianus and Debaryomyces hansenii. Bioprocess Biosyst Eng 38(6):1143–1155. https://doi.org/10.1007/s00449-015-1356-0

    Article  Google Scholar 

  152. Negro V, Mancini G, Ruggeri B, Fino D (2016) Citrus waste as feedstock for bio-based products recovery: review on limonene case study and energy valorization. Biores Technol 214:806–815

    Article  Google Scholar 

  153. Matsuo Y, Miura LA, Araki T, Yoshie-Stark Y (2019) Proximate composition and profiles of free amino acids, fatty acids, minerals and aroma compounds in Citrus natsudaidai peel. Food Chem 279:356–363

    Article  Google Scholar 

  154. Guneser O, Demirkol A, Yuceer YK, Togay SO, Hosoglu MI, Elibol M (2017) Production of flavor compounds from olive mill waste by Rhizopus oryzae and Candida tropicalis. Braz J Microbiol 48:275–285

    Article  Google Scholar 

  155. Sharmila VG, Kavitha S, Obulisamy PK, Banu JR (2020) Production of fine chemicals from food wastes. Food waste to valuable resources. Elsevier, pp 163–188

    Chapter  Google Scholar 

  156. Peinado I, Koutsidis G, Ames J (2016) Production of seafood flavour formulations from enzymatic hydrolysates of fish by-products. LWT-Food Sci Technol 66:444–452

    Article  Google Scholar 

  157. Panda SK, Ray RC, Mishra SS, Kayitesi E (2018) Microbial processing of fruit and vegetable wastes into potential biocommodities: a review. Crit Rev Biotechnol 38(1):1–16

    Article  Google Scholar 

  158. Moradi H, Asadollahi MA, Nahvi I (2013) Improved γ-decalactone production from castor oil by fed-batch cultivation of Yarrowia lipolytica. Biocatal Agric Biotechnol 2(1):64–68. https://doi.org/10.1016/j.bcab.2012.11.001

    Article  Google Scholar 

  159. Fadel HHM, Mahmoud MG, Asker MMS, Lotfy SN (2015) Characterization and evaluation of coconut aroma produced by Trichoderma viride EMCC-107 in solid state fermentation on sugarcane bagasse. Electron J Biotechnol 18(1):5–9

    Article  Google Scholar 

  160. Soccol CR, Medeiros AB, Vandenberghe LP, Woiciechowski AL (2007) Flavor production by solid and liquid fermentation. Handb Food Prod Manuf 1:193

    Google Scholar 

  161. Martínez O, Sánchez A, Font X, Barrena R (2017) Valorization of sugarcane bagasse and sugar beet molasses using Kluyveromyces marxianus for producing value-added aroma compounds via solid-state fermentation. J Clean Prod 158:8–17. https://doi.org/10.1016/j.jclepro.2017.04.155

    Article  Google Scholar 

  162. Jelley RE, Herbst-Johnstone M, Klaere S, Pilkington LI, Grose C, Martin D, Barker D, Fedrizzi B (2016) Optimization of ecofriendly extraction of bioactive monomeric phenolics and useful flavor precursors from grape waste. ACS Sustain Chem Eng 4(9):5060–5067

    Article  Google Scholar 

  163. Ismail NI, Hashim YZH-Y, Jamal P, MohdSalleh H, Othman R (2014) Ultrasonic-assisted extraction of thiols from garlic bulbs. Adv Environ Biol 15:725–729

    Google Scholar 

  164. Parameswari S, Sivasankari S (2018) Execution of enriched rice bran medium in hyper production of penicillin V by Penicillium chrysogenum. Waste Biomass Valor 9(9):1559–1565

    Article  Google Scholar 

  165. Dayalan SAJ, Darwin P, Prakash S (2011) Comparative study on production, purification of penicillin by Penicillium chrysogenum isolated from soil and citrus samples. Asian Pac J Trop Biomed 1(1):15–19. https://doi.org/10.1016/S2221-1691(11)60061-0

    Article  Google Scholar 

  166. Cuadra T, Fernandez F, Tomasini A, Barrios-González J (2008) Influence of pH regulation and nutrient content on cephalosporin C production in solid-state fermentation by Acremonium chrysogenum C10. Lett Appl Microbiol 46(2):216–220

    Article  Google Scholar 

  167. Singh S, Gupte A, Singh S (2017) Utilization of buttermilk processing waste for cephalosporin C production by A. chrysogenum NCIM 1069. World J Pharm Res 6(10):1497–1506

    Article  Google Scholar 

  168. Sadh PK, Kumar S, Chawla P, Duhan JS (2018) Fermentation: a boon for production of bioactive compounds by processing of food industries wastes (by-products). Molecules 23(10):2560

    Article  Google Scholar 

  169. Granados-Chinchilla F, Rodríguez C (2017) Tetracyclines in food and feedingstuffs: from regulation to analytical methods, bacterial resistance, and environmental and health implications. J Anal Methods Chem. https://doi.org/10.1155/2017/1315497

    Article  Google Scholar 

  170. El Deen AMN, Abdelwahed NA, Shata HM, Farid MA (2015) Optimization of process parameters for erythromycin production under solid state fermentation by Saccharopolyspora erythraea NCIMB 12462. J Pure Appl Microbiol 9(1):41–48

    Google Scholar 

  171. Farid MA, Shata HM, El-Deen AMN, Abdelwahed NA (2015) Semisolid state fermentation: effects of beet sugar root: peptone ratio on erythromycin production by Saccharopolyspora erythraea NCIMB 12462. Egypt Pharmaceut J 14(2):94

    Article  Google Scholar 

  172. Phair JW (2006) Green chemistry for sustainable cement production and use. Green Chem 8(9):763–780

    Article  Google Scholar 

  173. Ataie FF, Riding KA (2016) Influence of agricultural residue ash on early cement hydration and chemical admixtures adsorption. Constr Build Mater 106:274–281

    Article  Google Scholar 

  174. Adesanya D (1996) Evaluation of blended cement mortar, concrete and stabilized earth made from ordinary Portland cement and corn cob ash. Constr Build Mater 10(6):451–456

    Article  Google Scholar 

  175. Adesanya D, Raheem A (2010) A study of the permeability and acid attack of corn cob ash blended cements. Constr Build Mater 24(3):403–409

    Article  Google Scholar 

  176. Binici H, Yucegok F, Aksogan O, Kaplan H (2008) Effect of corncob, wheat straw, and plane leaf ashes as mineral admixtures on concrete durability. J Mater Civ Eng 20(7):478–483

    Article  Google Scholar 

  177. Pinto J, Vieira B, Pereira H, Jacinto C, Vilela P, Paiva A, Pereira S, Cunha VM, Varum H (2012) Corn cob lightweight concrete for non-structural applications. Constr Build Mater 34:346–351

    Article  Google Scholar 

  178. Kanning RC, Portella KF, Bragança MO, Bonato MM, dos Santos JC (2014) Banana leaves ashes as pozzolan for concrete and mortar of Portland cement. Constr Build Mater 54:460–465

    Article  Google Scholar 

  179. Rodier L, Villar-Cociña E, Ballesteros JM, Junior HS (2019) Potential use of sugarcane bagasse and bamboo leaf ashes for elaboration of green cementitious materials. J Clean Prod 231:54–63

    Article  Google Scholar 

  180. Munshi S, Sharma RP (2019) Utilization of rice straw ash as a mineral admixture in construction work. Mater Today: Proc 11:637–644

    Google Scholar 

  181. Tayeh BA, Hadzima-Nyarko M, Zeyad AM, Al-Harazin SZ (2021) Properties and durability of concrete with olive waste ash as a partial cement replacement. Adv Concr Constr 11(1):59–71

    Google Scholar 

  182. Singhania RR, Patel AK, Thomas L, Goswami M, Giri BS, Pandey A (2015) Chapter 13 - industrial enzymes. In: Pandey A, Höfer R, Taherzadeh M, Nampoothiri KM, Larroche C (eds) Industrial biorefineries and white biotechnology. Elsevier, Amsterdam, pp 473–497

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Olutayo Abiodun Oluyinka or Emmanuel Anuoluwapo Oke.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oluyinka, O.A., Oke, E.A., Oyelude, E.O. et al. Recapitulating potential environmental and industrial applications of biomass wastes. J Mater Cycles Waste Manag 24, 2089–2107 (2022). https://doi.org/10.1007/s10163-022-01473-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-022-01473-y

Keywords

Navigation