Skip to main content

Advertisement

Log in

Life cycle environmental benefit and waste-to-energy potential of municipal solid waste management scenarios in Indonesia

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

Appropriate municipal solid waste management transition should be promoted for developing Asian countries. Thus, we established a life-cycle assessment model to assess the environmental impact of waste recycling, composting, incineration, and landfill with gas recovery (LFG) for 34 capital cities in Indonesia by 2025. Scenarios A (12.5% recycling + 12.5% composting + 37.5% incineration + 37.5% LFG), B (15% recycling + 10% composting + 50% incineration + 25% LFG), C (10% recycling + 15% composting + 25% incineration + 50% LFG), D (20% recycling + 5% composting + 75% incineration), and E (20% recycling + 5% composting + 75% LFG) are developed to quantify future environmental impacts and energy generation potential from waste-to-energy (WtE). Results show that Java contributes the highest environmental impacts, while Moluccas and Papua show the least impacts. Cumulative environmental benefits from scenarios A, E, D, B, and C were 98%, 97%, 92%, 91%, and 86%, respectively, compared to Business-as-Usual scenario. Incineration can provide more energy than LFG. Scenarios D and E generate the highest electricity from incineration and LFG, respectively. WtE electricity rate to social energy consumption is scenario B (5.34%) > D (5.22%) > A (4.81%) > C (4.27%) > E (1.49%). Scenario A is suggested considering its best environmental benefit, while scenario B is advised considering its highest electricity contribution rate. Finally, appropriate environmental mitigation schemes and WtE facilitation are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

MSW:

Municipal solid waste

LFG:

Landfill gas

WtE:

Waste to energy

\({W}_{\mathrm{rate}}\) :

Daily waste generation per capita in the city (kg/capita/day)

\({W}_{\mathrm{Total}}\) :

Total amount of waste generation (collected) in the city (quantified as kg/day)

\({Q}_{\mathrm{pop}}\) :

Population numbers residing the city as MSW collection service

\({Q}_{{\mathrm{w}}_{2025}}\) :

Estimation of daily waste produced in 2025 (ton/day)

\({W}_{i}\) :

Quantity of waste category i (tons/day)

\({p}_{i}\) :

Percentage of waste category i in respective cities (%)

\({W}_{\mathrm{Total}}\) :

Daily amount of waste generation in respective cities (tons/day)

\({W}_{{\mathrm{Sc}}_{\mathrm{incineration}}}\) :

Quantity of waste available for incineration in respective scenario (tons/day)

\({\mathrm{MSW}}_{{\% \mathrm{sc}}_{\mathrm{incineration}}}\) :

Percentage of waste allocation in selected scenario (%)

\({\mathrm{Fw}}_{{\mathrm{Sc}}_{\mathrm{incineration}}}\) :

Adjusted fraction of incinerable waste in each scenario (%)

\(\mathrm{LCV}\) :

Lower calorific value (LVC) of the waste category (kcal/kg)

\({\mathrm{LCV}}_{{W}_{(i)}}\) :

LCV in each fraction of waste for MSW incineration (kJ/kg)

\({{\mathrm{LCV}}_{{W}_{(\mathrm{incineration})}}}_{i}\) :

LCV of waste category i incinerated (kJ/kg)

\({K}_{1}\) :

Constant value of a conversion from kcal/kg to kJ/kg (4.184)

\({\mathrm{LCV}}_{\mathrm{Total}}\) :

Cumulative LCV waste for incineration (kJ/kg)

\(P\) :

Amount of electric power (kW)

\(\gamma\) :

Thermal replacement achievable from incineration (0.316)

\({K}_{2}\) :

Adjustment constant for kW as electric power unit (0.001157)

\({\mathrm{Cap}}_{\mathrm{f}}\) :

Capacity factor of WtE incineration (0.7375)

\(\omega\) :

Total number of hours per annum (yearly equal as 8760)

\({E}_{\mathrm{Incineration}}\) :

Amount of electricity generated (kWh/year)

\({\alpha }\) :

Assumption of electricity usage for WtE power plant (6%)

\(\beta\) :

Assumption of heat loss (5%)

\({E}_{\mathrm{actual}}\) :

Net electricity produced (kWh/year)

\({Q\mathrm{waste}}_{\mathrm{daily} (t)}\) :

Total quantity of waste produced (ton/day) in year t

\({\mathrm{Pop}}_{\mathrm{year} \left(t\right)}\) :

Number of populations in year t

\({W}_{{t}_{\mathrm{rate}/\mathrm{capita}}}\) :

Waste generation rate per capita (kg/cap/day) in year t

\({N}_{{\mathrm{Days}}_{\mathrm{year} (t)}}\) :

Number of days in year t (adapted value: 365)

\({Q}_{{\mathrm{CH}}_{4}}\) :

Annual methane generation in the year of the calculation (m3/year)

\(t\) :

One year time increment

\(n\) :

Year of the calculation minus the initial year of waste acceptance

\(j\) :

0.1 Years of time increment

\(k\) :

Methane generation rate (year-1)

\({L}_{0}\) :

Potential CH4 generation capacity (m3/Mg)

\({M}_{t}\) :

Mass of waste accepted yth year (Mg)

\({A}_{t, j}\) :

Age of section j of the waste mass \({M}_{i}\) accepted in year t

\({\mathrm{Cap}}_{{\mathrm{CH}}_{4} (\mathrm{t})}\) :

CH4 captured from landfill in year t for power generation (m3/year)

\({\mathrm{eff}}_{{\mathrm{CH}}_{4}}\) :

Methane collection efficiency (0.75)

\({\mathrm{E}}_{{\mathrm{actual}}_{(\mathrm{LFG})}}\) :

Electricity potential produced from LFG (kWh/year)

\({\mathcalligra{v}}\) :

Methane heating value (37.2) in MJ/m3

\(\zeta\) :

Capacity factor (0.85)

\(\varphi\) :

Landfill oxidation factor (0.9)

\(\in\) :

Electrical conversion efficiency for internal combustion engine (35%)

\(\theta\) :

\(\mathrm{MJ to kWh}\) Conversion factor (3.6)

\({\mathcal{E}}_{y(2025){\mathrm{WtE}}_{\mathrm{Incineration}}}\) :

Incineration energy percentage to public energy consumption by 2025 in cities (%)

\({\mathcal{E}}_{y(2025){\mathrm{WtE}}_{\mathrm{LFG}}}\) :

LFG energy percentage to public energy consumption by 2025 in cities (%)

\({2025}_{{\mathrm{EP}}_{\mathrm{net}}{\mathrm{WtE}}_{\mathrm{Incineration}}}\) :

Total electricity production by 2025 from incineration (MWh/year)

\({2025}_{{\mathrm{EP}}_{{\mathrm{netWtE}}_{\mathrm{LFG}}}}\) :

Total electricity generation by 2025 from LFG (MWh/year)

\({2025}_{{\mathrm{EP}}_{\mathrm{capita}}}\) :

Total electricity consumption in cities by 2025 (MWh/year) considering Indonesian per capita energy consumption

References

  1. Zhang J, Qin Q, Li G, Tseng CH (2021) Sustainable municipal waste management strategies through life cycle assessment method: a review. J Environ Manage 287:112238. https://doi.org/10.1016/j.jenvman.2021.112238

    Article  Google Scholar 

  2. United Nations Environment Programme (2016) Global waste management outlook. United Nations Environment Programme, Nairobi. https://doi.org/10.18356/765baec0-en

    Book  Google Scholar 

  3. Silpa K, Lisa Y, Perinaz B-T, Van Woerden F (2018) What a Waste 2.0 Introduction -"Snapshot of Solid Waste Management to 2050.” Overview booklet. World Bank, Washington, DC. https://openknowledge.worldbank.org/handle/10986/30317. Accessed 3 Sep 2020

  4. Aprilia A, Tezuka T, Spaargaren G (2013) Inorganic and hazardous solid waste management: current status and challenges for Indonesia. Proc Environ Sci 17:640–647. https://doi.org/10.1016/j.proenv.2013.02.080

    Article  Google Scholar 

  5. Lestari P, Trihadiningrum Y (2019) The impact of improper solid waste management to plastic pollution in Indonesian coast and marine environment. Mar Pollut Bull 149:110505. https://doi.org/10.1016/j.marpolbul.2019.110505

    Article  Google Scholar 

  6. Nurhasanah CMR, Riani E (2021) Micro and mesoplastics release from the Indonesian municipal solid waste landfill leachate to the aquatic environment: case study in Galuga Landfill Area, Indonesia. Mar Pollut Bull 163:111986. https://doi.org/10.1016/j.marpolbul.2021.111986

    Article  Google Scholar 

  7. Ministry of Environment and Forestry (2020) National Plastic Waste Reduction Strategic Actions for Indonesia. https://wedocs.unep.org/bitstream/handle/20.500.11822/32898/NPWRSI.pdf. Accessed 5 Jan 2021

  8. Aye L, Widjaya ER (2006) Environmental and economic analyses of waste disposal options for traditional markets in Indonesia. Waste Manag 26:1180–1191. https://doi.org/10.1016/j.wasman.2005.09.010

    Article  Google Scholar 

  9. Golwala H, Zhang X, Iskander SM, Smith AL (2021) Solid waste: an overlooked source of microplastics to the environment. Sci Total Environ 769:144581. https://doi.org/10.1016/j.scitotenv.2020.144581

    Article  Google Scholar 

  10. Liu C, Dong H, Cao Y et al (2021) Environmental damage cost assessment from municipal solid waste treatment based on LIME3 model. Waste Manag 125:249–256. https://doi.org/10.1016/j.wasman.2021.02.051

    Article  Google Scholar 

  11. Vinti G, Bauza V, Clasen T et al (2021) Municipal solid waste management and adverse health outcomes: a systematic review. Int J Environ Res Public Health 18:1–26. https://doi.org/10.3390/ijerph18084331

    Article  Google Scholar 

  12. Damanhuri E, Padmi T (2009) Current situation of waste recycling in Indonesia. Chapter 2. Economic Research Institute for ASEAN and East Asia (ERIA) Research Project Report. https://www.eria.org/uploads/media/Research-Project-Report/RPR_FY2008_6-1_Chapter_2.pdf. Accessed 2 Aug 2020

  13. National Plastic Action Partnership (2020) Radically reducing plastic pollution in Indonesia: a multistakeholder action plan. World Economic Forum. https://globalplasticaction.org/wp-content/uploads/NPAP-Indonesia-Multistakeholder-Action-Plan_April-2020.pdf. Accessed 4 Aug 2020

  14. Ministry of National Planning and Development Indonesia (2021) The economic, social and environmental benefits of a circular economy in Indonesia. https://lcdi-indonesia.id/wp-content/uploads/2021/02/Full-Report-The-Economic-Social-and-Environmental-Benefits-of-a-Circular-Economy-in-Indonesia.pdf. Accessed 5 Jun 2021

  15. National Development Planning Agency (2010) Indonesia climate change sectoral roadmap—ICCSR (Waste Sector). National Development Planning Agency of the Republic of Indonesia. https://www.bappenas.go.id/files/8913/5022/6069/climate-change-roadmap-waste-sector__20110218181950__0.pdf. Accessed 3 Jun 2020

  16. Damanhuri E (2017) State of the 3Rs in Asia and the Pacific. United Nations Centre for Regional Development. https://www.uncrd.or.jp/content/documents/5689 [Nov 2017] Indonesia.pdf. Accessed 28 May 2020

  17. Novita DM, Damanhuri E (2009) Heating value based on composition and characteristics of municipal solid waste in Indonesia in waste to energy concept. J Tek Lingkung 16:103–114. http://journals.itb.ac.id/index.php/jtl/article/view/8179/3268

  18. Takaendengan T, Padmi T, Sembiring E, Damanhuri E (2017) Municipal solid waste generation, composition, and management: Manado City. In: Proceedings of the 2nd international conference on education, science, and technology (ICEST 2017). Atlantis Press. https://doi.org/10.2991/icest-17.2017.73

  19. Dhokhikah Y, Trihadiningrum Y, Sunaryo S (2015) Community participation in household solid waste reduction in Surabaya, Indonesia. Resour Conserv Recycl 102:153–162. https://doi.org/10.1016/j.resconrec.2015.06.013

    Article  Google Scholar 

  20. Indrianti N (2016) Community-based solid waste bank model for sustainable education. Proc Soc Behav Sci 224:158–166. https://doi.org/10.1016/j.sbspro.2016.05.431

    Article  Google Scholar 

  21. Maryati S, Arifiani NF, Humaira ANS, Putri HT (2018) Factors influencing household participation in solid waste management (Case study: Waste Bank Malang). IOP Conf Ser Earth Environ Sci 124:0–5. https://doi.org/10.1088/1755-1315/124/1/012015

    Article  Google Scholar 

  22. Budihardjo MA, Wahyuningrum IFS, Muhammad FI, Pardede R (2019) The role of waste banks in the reduction of solid waste sent to landfill in Semarang, Central Java, Indonesia. IOP Conf Ser Earth Environ Sci. https://doi.org/10.1088/1755-1315/337/1/012028

    Article  Google Scholar 

  23. Sasaki S, Araki T, Tambunan AH, Prasadja H (2014) Household income, living and working conditions of dumpsite waste pickers in Bantar Gebang: toward integrated waste management in Indonesia. Resour Conserv Recycl 89:11–21. https://doi.org/10.1016/j.resconrec.2014.05.006

    Article  Google Scholar 

  24. Sasaki S, Araki T (2013) Employer-employee and buyer-seller relationships among waste pickers at final disposal site in informal recycling: the case of Bantar Gebang in Indonesia. Habitat Int 40:51–57. https://doi.org/10.1016/j.habitatint.2013.02.003

    Article  Google Scholar 

  25. Fatimah YA, Govindan K, Murniningsih R, Setiawan A (2020) Industry 4.0 based sustainable circular economy approach for smart waste management system to achieve sustainable development goals: a case study of Indonesia. J Clean Prod 269:122263. https://doi.org/10.1016/j.jclepro.2020.122263

    Article  Google Scholar 

  26. Kerstens SM, Priyanka A, Van Dijk KC et al (2016) Potential demand for recoverable resources from Indonesian wastewater and solid waste. Resour Conserv Recycl 110:16–29. https://doi.org/10.1016/j.resconrec.2016.03.002

    Article  Google Scholar 

  27. Kuo TC, Hsu NY, Wattimena R et al (2021) Toward a circular economy: a system dynamic model of recycling framework for aseptic paper packaging waste in Indonesia. J Clean Prod 301:126901. https://doi.org/10.1016/j.jclepro.2021.126901

    Article  Google Scholar 

  28. Kristanto GA, Koven W (2019) Estimating greenhouse gas emissions from municipal solid waste management in Depok, Indonesia. City Environ Interact 4:100027. https://doi.org/10.1016/j.cacint.2020.100027

    Article  Google Scholar 

  29. Fikri E, Purwanto P, Sunoko HR (2015) Modelling of household hazardous waste (HHW) management in Semarang city (Indonesia) by using life cycle assessment (LCA) approach to reduce greenhouse gas (GHG) emissions. Proc Environ Sci 23:123–129. https://doi.org/10.1016/j.proenv.2015.01.019

    Article  Google Scholar 

  30. Suryawan IWK, Rahman A, Septiariva IY et al (2021) Life cycle assessment of solid waste generation during and before pandemic of Covid-19 in Bali Province. J Sustain Sci Manag 16:11–21. https://doi.org/10.46754/jssm.2021.01.002

    Article  Google Scholar 

  31. Lokahita B, Samudro G, Huboyo HS et al (2019) Energy recovery potential from excavating municipal solid waste dumpsite in Indonesia. Energy Procedia 158:243–248. https://doi.org/10.1016/j.egypro.2019.01.083

    Article  Google Scholar 

  32. Sudibyo H, Majid AI, Pradana YS et al (2017) Technological evaluation of municipal solid waste management system in Indonesia. Energy Procedia 105:263–269. https://doi.org/10.1016/j.egypro.2017.03.312

    Article  Google Scholar 

  33. Banaget CK, Frick B, Saud MNIL (2020) Analysis of electricity generation from landfill gas (case study: Manggar Landfill, Balikpapan). IOP Conf Ser Earth Environ Sci. https://doi.org/10.1088/1755-1315/448/1/012003

    Article  Google Scholar 

  34. Lee U, Benavides PT, Wang M (2020) Life cycle analysis of waste-to-energy pathways. Academic Press, New York. https://doi.org/10.1016/b978-0-12-816394-8.00008-2

    Book  Google Scholar 

  35. Brancoli P, Bolton K (2019) Sustainable resource recovery and zero waste approaches. In: Mohammad JT, Kim B, Jonathan W, Ashok P (eds) Life cycle assessment of waste management systems. Elsevier B.V., St. Louis. https://doi.org/10.1016/B978-0-444-64200-4.00002-5

    Chapter  Google Scholar 

  36. Kawai K, Tasaki T (2016) Revisiting estimates of municipal solid waste generation per capita and their reliability. J Mater Cycles Waste Manag 18:1–13. https://doi.org/10.1007/s10163-015-0355-1

    Article  Google Scholar 

  37. Escamilla-García PE, Camarillo-López RH, Carrasco-Hernández R et al (2020) Technical and economic analysis of energy generation from waste incineration in Mexico. Energy Strateg Rev. https://doi.org/10.1016/j.esr.2020.100542

    Article  Google Scholar 

  38. de da Silva LJVB, dos Santos IFS, Mensah JHR et al (2020) Incineration of municipal solid waste in Brazil: an analysis of the economically viable energy potential. Renew Energy 149:1386–1394. https://doi.org/10.1016/j.renene.2019.10.134

    Article  Google Scholar 

  39. Ministry of Public Works and Public Housing of the Republic of Indonesia (2018) WtE thermal technology-based combustion (incineration) process. Badan Pengembangan Sumber Daya Manusia, Kementerian Pekerjaan Umum dan Perumahan Rakyat, Bandung. https://bpsdm.pu.go.id/center/pelatihan/uploads/edok/2019/04/e34ac_9._Modul_Insinerasi.pdf

  40. United States Environmental Protection Agency (2005) Landfill gas emissions model version 3.02 user’s guide. U.S. Environmental Protection Agency Office of Research and Development, Washington DC. http://www3.epa.gov/ttncatc1/dir1/landgem-v302-guide.pdf. Accessed 2 Sep 2020

  41. Coskuner G, Jassim MS, Nazeer N, Damindra GH (2020) Quantification of landfill gas generation and renewable energy potential in arid countries: case study of Bahrain. Waste Manag Res 38:1110–1118. https://doi.org/10.1177/0734242X20933338

    Article  Google Scholar 

  42. Sun N, Chungpaibulpatana S (2017) Development of an appropriate model for forecasting municipal solid waste generation in Bangkok. Energy Proc 138:907–912. https://doi.org/10.1016/j.egypro.2017.10.134

    Article  Google Scholar 

  43. Noor MN, Bakri AMM Al, Yahaya AS, et al (2013) Estimation of missing values in environmental data set using interpolation technique: fitting on lognormal distribution. Aust J Basic Appl Sci 7:336–341. http://www.ajbasweb.com/old/ajbas/2013/Special,issue22013/336-341.pdf

  44. Santiabudi F, Yuwono AS, Turyanti A (2010) Quantification of methane emissions from landfill in Galuga, Cibungbulang Bogor, West Java. Dissertation, Bogor Agricultural University. https://repository.ipb.ac.id/handle/123456789/61918

  45. Fung DSC (2006) Methods for the estimation of missing values in time series. Edith Cowan University. https://ro.ecu.edu.au/theses/63. Accessed 5 Oct 2020

  46. Global Methane Initiative (2012) Chapter 6. Landfill Gas Modeling. In: International Best Practices Guide for Landfill Gas Energy Projects. pp 63–76. https://www.globalmethane.org/resources/details.aspx?resourceid=1975. Accessed 7 Oct 2020

  47. Krause MJ, Chickering GW, Townsend TG (2016) Translating landfill methane generation parameters among first-order decay models. J Air Waste Manag Assoc 66:1084–1097. https://doi.org/10.1080/10962247.2016.1200158

    Article  Google Scholar 

  48. Plocoste T, Jacoby Koaly S (2016) Estimation of methane emission from a waste dome in a tropical insular area. Int J Waste Resour 6:1000211. https://doi.org/10.4172/2252-5211.1000211

    Article  Google Scholar 

  49. Barragán-Escandón A, Ruiz JMO, Tigre JDC, Zalamea-León EF (2020) Assessment of power generation using biogas from landfills in an equatorial tropical context. Sustain 12:1–18. https://doi.org/10.3390/su12072669

    Article  Google Scholar 

  50. Cudjoe D, Han MS, Chen W (2021) Power generation from municipal solid waste landfilled in the Beijing-Tianjin-Hebei region. Energy 217:119393. https://doi.org/10.1016/j.energy.2020.119393

    Article  Google Scholar 

  51. Sartika, Wibowo AP (2017) Pemodelan Kebutuhan Listrik Indonesia Terkait Pencapaian Sasaran Kebijakan Energi Nasional. (Modelling Indonesia's electricity demand related to the achievement of national energy policy targets). Politeknosains. 16: 50–60. http://jurnal.politama.ac.id/index.php/politeknosains/article/view/70/66

  52. Schmaltz E, Melvin EC, Diana Z et al (2020) Plastic pollution solutions: emerging technologies to prevent and collect marine plastic pollution. Environ Int. https://doi.org/10.1016/j.envint.2020.106067

    Article  Google Scholar 

  53. Curren J, Hallis SA, Snyder CL, Suffet IH (2016) Identification and quantification of nuisance odors at a trash transfer station. Waste Manag 58:52–61. https://doi.org/10.1016/j.wasman.2016.09.021

    Article  Google Scholar 

  54. Ibanga IE, Fletcher LA, Noakes CJ et al (2018) Pilot-scale biofiltration at a materials recovery facility: the impact on bioaerosol control. Waste Manag 80:154–167. https://doi.org/10.1016/j.wasman.2018.09.010

    Article  Google Scholar 

  55. Khan S, Anjum R, Raza ST et al (2022) Technologies for municipal solid waste management: current status, challenges, and future perspectives. Chemosphere 288:132403. https://doi.org/10.1016/j.chemosphere.2021.132403

    Article  Google Scholar 

  56. Li H, Nitivattananon V, Li P (2015) Municipal solid waste management health risk assessment from air emissions for China by applying life cycle analysis. Waste Manag Res 33:401–409. https://doi.org/10.1177/0734242X15580191

    Article  Google Scholar 

  57. Demetrious A, Verghese K, Stasinopoulos P, Crossin E (2018) Comparison of alternative methods for managing the residual of material recovery facilities using life cycle assessment. Resour Conserv Recycl 136:33–45. https://doi.org/10.1016/j.resconrec.2018.03.024

    Article  Google Scholar 

  58. Wei Y, Li J, Shi D et al (2017) Environmental challenges impeding the composting of biodegradable municipal solid waste: a critical review. Resour Conserv Recycl 122:51–65. https://doi.org/10.1016/j.resconrec.2017.01.024

    Article  Google Scholar 

  59. Liu T, Chen H, Zhou Y et al (2022) Composting as a Sunita Varjani sustainable technology for integrated municipal solid waste management. In: Sunita V, Ashok P, Mohammad JT, Huu HH, Tyagi RD (eds) Biomass, biofuels, biochemicals circular bioeconomy: technologies for waste remediation. Elsevier Inc, Amsterdam, pp 23–29. https://doi.org/10.1016/B978-0-323-88511-9.00002-1

    Chapter  Google Scholar 

  60. Zakaria R, Aziz HA, Wang LK, Hung Y-T (2021) Combustion and incineration. In: Wang LK, Wang M-HS, Hung Y-T (eds) Solid waste engineering and management. Handbook of environmental engineering. Springer, Cham, pp 345–397

    Google Scholar 

  61. Qian L, Wang Y, Liu M et al (2021) Performance evaluation of urea injection on the emission reduction of dioxins and furans in a commercial municipal solid waste incinerator. Process Saf Environ Prot 146:577–585. https://doi.org/10.1016/j.psep.2020.11.048

    Article  Google Scholar 

  62. Chen X, Li J, Liu Q et al (2022) Emission characteristics and impact factors of air pollutants from municipal solid waste incineration in Shanghai, China. J Environ Manage 310:114732. https://doi.org/10.1016/j.jenvman.2022.114732

    Article  Google Scholar 

  63. Hu Y, Cheng H, Tao S (2018) The growing importance of waste-to-energy (WTE) incineration in China’s anthropogenic mercury emissions: emission inventories and reduction strategies. Renew Sustain Energy Rev 97:119–137. https://doi.org/10.1016/j.rser.2018.08.026

    Article  Google Scholar 

  64. Gunsilius E (2010) Role of informal sector in solid waste management and enabling conditions for its integration. German Technical Cooperation Agency (Gesellschaft für Technische Zusammenarbeit GmbH (GTZ)). http://www.transwaste.eu/file/001441.pdf. Accessed 10 Nov 2020

  65. Paul JG, Arce-Jaque J, Ravena N, Villamor SP (2012) Integration of the informal sector into municipal solid waste management in the Philippines—what does it need? Waste Manag 32:2018–2028. https://doi.org/10.1016/j.wasman.2012.05.026

    Article  Google Scholar 

  66. Tong YD, Huynh TDX, Khong TD (2021) Understanding the role of informal sector for sustainable development of municipal solid waste management system: a case study in Vietnam. Waste Manag 124:118–127. https://doi.org/10.1016/j.wasman.2021.01.033

    Article  Google Scholar 

Download references

Acknowledgements

This study is supported by the National Natural Science Foundation of China (71974126, 72088101, 72061127004), the open fund of Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, and Shanghai Environmental Key Lab of Environmental Data and Intelligence.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, HD and ABM; methodology, ABM and HD; software, ABM; formal analysis, ABM and HD; writing—original draft preparation, ABM; writing—review and editing, ABM, CZ, and HD; visualization, ABM; supervision, HD and MF; funding acquisition, HD. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Huijuan Dong.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4688 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mustafa, A.B., Dong, H., Zhang, C. et al. Life cycle environmental benefit and waste-to-energy potential of municipal solid waste management scenarios in Indonesia. J Mater Cycles Waste Manag 24, 1859–1877 (2022). https://doi.org/10.1007/s10163-022-01441-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-022-01441-6

Keywords

Navigation