Skip to main content
Log in

GIS-based multi-criteria evaluation for olive mill wastewater disposal site selection

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

The installation of an olive mill wastewater (OMW) disposal site without well-defined standards and constraints may cause undesirable long-term effects on soils and groundwater. In Tunisia and other developing countries, there are no solid waste control regulations to control the location selection of disposal sites. In this study, the OMW disposal site criteria established in Greece, Turkey, and China’s regulations were used to select the best location for the OMW disposal site in the Sidi Bouzid region of Tunisia. The multi-criteria analysis was performed using a geographic information system (GIS) combined with the different functions of the fuzzy set method for suitability criteria. The analytic hierarchy process (AHP) was used to assign the weight of selected criteria and the weighted linear combination (WLC) aggregation method is displayed to create the final OMW disposal site. The obtained results show that the selection of suitable OMW disposal sites is based on different norms, given the spatial differences of the selected areas. The final decision is based on the selection of the strictest solid waste control regulations which takes into consideration environmental and socio-economic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jarboui R, Hadrich B, Gharsallah N, Ammar E (2010) Olive mill wastewater disposal in evaporation ponds in Sfax (Tunisia): moisture content effect on microbiological and physical chemical parameters. Biodegradation 20:845–858

    Article  Google Scholar 

  2. Lopes M, Araujo C, Aguedo M, Gomes N, Gonçalves C, Teixeira JA, Belo I (2009) The use of olive mill wastewater by wild type Yarrowia lipolytica strains: medium supplementation and surfactant presence effect. J Chem Technol Biotechnol 84(4):533–537

    Article  Google Scholar 

  3. Ammar E, Mekki H, Ueno S, Ben Zina M (2004) Traitement de l’effluent des huileries d’olive et son inte´gration dans des briques de construction – optimisation des proprie´te´sphysico-me´caniques par analyse statistique. Annal Chimie Sci Mate´r 29:33–46 (treatment of olive mill effluent and its integration in building bricks – optimization of physico-mechanical properties by statistical analysis).

  4. Kavvadias V, Doula MK, Komnitsas K, Liakopoulou N (2010) Disposal of olive oil mill wastes in evaporation ponds: effects on soil properties. J Hazard Mater 182:144–155

    Article  Google Scholar 

  5. Komnitsas K, Zaharaki D (2012) Pre-treatment of olive mill wastewaters at laboratory and mill scale and subsequent use in agriculture: legislative framework and proposed soil quality indicators. Resour Conserv Recycl 69:82–89

    Article  Google Scholar 

  6. Roig A, Cayuela ML, Sànchez-Monedero MA (2006) An overview on olive mill wastes and their valorization methods. Waste Manage 26:960–969

    Article  Google Scholar 

  7. Shabou R, Zairi M, Kallel A, Aydi A, Ben Dhia H (2009) Assessing the effect of an olive mill wastewater evaporation pond in Sousse, Tunisia. Environ Geol 58:679–686

    Article  Google Scholar 

  8. Aydi A, Zairi M, Ben Dhia H (2013) Minimization of environmental risk of landfill site using fuzzy logic, analytical hierarchy process, and weighted linear combination methodology in a geographic information system environment. Environ Earth Sci 68(5):1375–1389

    Article  Google Scholar 

  9. Zamorano M, Molero E, Hurtado A, Grindlay A, Ramos A (2008) Evaluation of a municipal landfill site in southern Spain with GIS-aided technology. J Hazardous Mater 160:473–481

    Article  Google Scholar 

  10. Ersoy H, Bulut F (2009) Spatial and multi-criteria decision analysis based methodology for landfill site selection in growing urban regions. J Waste Manag Res 27:489–500

    Article  Google Scholar 

  11. Vatalis K, Manoliadis O (2002) A two-level multicriteria DSS for landfill site selection using GIS: case study in Western Macedonia, Greece. J Geogr Inf Decis Anal 6:49–56

    Google Scholar 

  12. Kontos TD, Komilis DP, Halvadakis CP (2003) Siting MSW landfills on Lesvos Island with a GIS-based methodology. Waste Manage Res 21:262–277

    Article  Google Scholar 

  13. Ahmad SZ, Ahamad MSS, Wan Hussin WMA (2011) Comparative site selection process based on different policies and guidelines for municipal solid waste landfill site. In: 10th International symposium & exhibition on geoinformation 2011 (ISG 2011), Selangor, Malaysia, 27–29 September 2011

  14. INS (Institut National de la Statistique) (2011) Données générales sur la population: données démographiques et sociales. http://www.ins.nat.tn

  15. Lazzez A, Vichi S, Kammoun NG, Arous MN, Khlif M, Romero A, Cossentini M (2011) A four year study to determine the optimal harvesting period for Tunisian Chemlali olives. Eur J Lipid Sci Technol 113:796–807

    Article  Google Scholar 

  16. Regional Commission for Agricultural Development of Sidi Bouzid, Tunisia (2015) Projet les cartes agricoles, données numériques

  17. Eldrandaly KA (2013) Developing a GIS – based MCE site selection tool in ArcGIS using COM technology. Int Arab J Inf Technol 10(3):276–282

    Google Scholar 

  18. Aydi A, Zairi M, Ben Dhia H (2012) Apport du SIG et des méthodes d’analyse multicritère pour le choix de site de stockage de margines. Revue Géomatique Expert N° 86

  19. Aydi A (2018) Evaluation of groundwater vulnerability to pollution using a GIS-based multi-criteria decision analysis. Groundw Sustain Dev 7:204–211

    Article  Google Scholar 

  20. Huanga Y, Lanb Y, ThomsonaSJ FA, Hoffmannb WC, Laceyd RE (2010) Development of soft computing and applications in agricultural and biological engineering. Comput Electron Agric 71:107–127

    Article  Google Scholar 

  21. Feizizadeh B, Blaschke T (2013) GIS-multi criteria decision analysis for landslide susceptibility mapping: comparing three methods for the Urmia lake basin, Iran. Nat Hazards 65:2105–2128

    Article  Google Scholar 

  22. Kaufmann A (1975) Introduction to the theory of fuzzy subsets: vol. 1 - Fundamental theoretical elements. Academic Press, New York, pp 409

  23. Kandel A (1982) Fuzzy techniques in pattern recognition. John Wiley and Sons, New York, p 356

    MATH  Google Scholar 

  24. Dubois D, Prade H (1980) Fuzzy sets and systems: Theory and application. Academic Press, New York, p 393

    MATH  Google Scholar 

  25. Eastman JR, Kyem PAK, Toledano J (1993) A procedure for multi-objective decision making in GIS under conditions of conflicting objectives. In Proceedings of European Conference on Geographical Information Systems, EGIS’93 (Utrecht: EGIS Foundation) 438–448

  26. Eastman JR (2003) IDRISI Kilimanjaro: Guide to GIS and Image Processing. Clark University: Worcester, 1, 87–131. https://doi.org/10.1109/TGRS.2002.802519

  27. Aydi A, Abichou T, Hamdi Nasr I, Louati M, Zairi M (2016) Assessment of land suitability for Olive mill wastewater Disposal Site Selection by integrating fuzzy logic, AHP and WLC in a GIS. Environ Monit Assess 188:59

    Article  Google Scholar 

  28. Unal M, Cilek A, Guner ED (2020) Implementation of fuzzy, Simos and strengths, weaknesses, opportunities and threats analysis for municipal solid waste landfill site selection: Adana City case study. Waste Manag Res. 38 (1_suppl): 45–64

  29. Saaty TL (1977) A scaling method for priorities in hierarchical structures. J Math Psychol 15(3):234–281

    Article  MathSciNet  Google Scholar 

  30. Saaty TL (2008) Decision making with the analytic hierarchy process. Int J Serv Sci 1(1):83–97

    Google Scholar 

  31. Sharifi M, Hadidi M, Vessali E, Mosstafakhani P, Taheri K, Shahoie S, Khodamoradpour M (2009) Integrating multi-criteria decision analysis for a GIS-based hazardous waste landfill sitting in Kurdistan Province Western Iran. Waste Manag 29(10):2740–2758

    Article  Google Scholar 

  32. Sener B, Suzen L, Doyuran V (2006) Landfill site selection by using geographic information systems. Environm Geol 49:376–388

    Article  Google Scholar 

  33. Eskandari M, Homaee M, Mahmodi S (2012) An integrated multi criteria approach for landfill siting in a conflicting environmental, economical and socio-cultural area. Waste Manag 32:1528–1538

    Article  Google Scholar 

  34. Saaty T, Vargas L (2001) Models, methods, concepts and applications of the analytic hierarchy process. Kluwer Academic Publishers, Edition, Boston

    Book  Google Scholar 

  35. Rezaei-Moghaddam K, Karami E (2008) A multiple criteria evaluation of sustainable agricultural development models using AHP. Environ Dev Sustain 10:407–426

    Article  Google Scholar 

  36. Bhushan N, Rai K (2004) Strategic Decision Making: Applying the AnalyticHierarchy Process. Springer-Verlag, New York, p 172

    MATH  Google Scholar 

  37. Saaty TL (1990) How to make a decision: the analytic hierarchy process. Eur J Oper Res 48(1):9–26

    Article  Google Scholar 

  38. Eastman JR (2006) IDRISI Andes Guide to GIS and Image Processing Manual Version 15.00. Clark University, Worcester, Massachusetts

    Google Scholar 

  39. Eastman JR (2006) IDRISI Andes Tutorial Manual Version 15.00. Clark University, Worcester, Massachusetts

    Google Scholar 

  40. Khodaparast M (2017) Municipal solid waste landfill siting by using GIS and analytical hierarchy process (AHP): a case study in Qom city, Iran. Environm Earth Sci 77:52

    Article  Google Scholar 

  41. Psonis K, Latsoudas C, Skourtsis-Koroneou V, Varti-Mataranga M, Petridou V (1982) Geologic Map of Greece, Scale 1:50,000. Kardhamili sheet, Institute of Geology and Mineral Exploration (IGME)

  42. Dorhofer G, Siebert H (1998) The search for landfill sites—requirements and implementation in Lower Saxony, Germany. Environm Geol 35(1):55–65

    Article  Google Scholar 

  43. Nas B, Karabork H, Ekercin S, Berktay A (2008) Mapping chlorophyll-a through in-situ measurements and Terra ASTER satellite data. Environm Monitor Assessm 157:375–382

    Article  Google Scholar 

  44. Greek Governmental Ministry Decision 114218/97 (1997) Document 1016 B’/17 –11-97 “Framework of Specifications and General Planning for Solid Wastes, in Greek

  45. European Council Directive 1999/31/EC, Document L 182 (1999) Landfilling of Solid Wastes. Off. J. L 182, 16/07/1999 P. 0001 - 0019

  46. Central Pollution Control Board (CPCB) (2014) National Air Quality Index. Central Pollution -Control Board, Ministry of Environment, Forests and Climate Change, Government of India

  47. Ministry of Environment and Forestry of Turkey (2000) Control list of site selection criteria for landfill sites. Ankara http://www.atikyonetimi.cevreorman.gov.tr/evsel/2.doc (Accessed 15.04.09)

  48. Antonakos AK, Lambrakis NJ (2007) Development and testing of three hybrid methods for the assessment of aquifer vulnerability to nitrates, based on the drastic model, an example from NE Korinthia, Greece. J Hydrol 333(2):288–304

    Article  Google Scholar 

  49. Cinelli M, Coles SR, Kirwan K (2014) Analysis of the potentials of multi criteria decision analysis methods to conduct sustainability assessment. Ecol Ind 46:138–148

    Article  Google Scholar 

  50. Leao S, Bishop I, Evans D (2001) Assessing the demand of solid waste disposal in urban region by urban dynamics modelling in a GIS environment. Resour Conserv Recycl 33(4):289–313

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelwaheb Aydi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Issaoui, W., Aydi, A., Mahmoudi, M. et al. GIS-based multi-criteria evaluation for olive mill wastewater disposal site selection. J Mater Cycles Waste Manag 23, 1490–1502 (2021). https://doi.org/10.1007/s10163-021-01231-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-021-01231-6

Keywords

Navigation