Skip to main content
Log in

Heterogeneities of fly ash particles generated from a fluidized bed combustor of municipal solid waste incineration

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

Although municipal solid waste incineration fly ash are fine particles and a priori considered as homogeneous, they have complicated structures inside their bodies. This study quantitatively investigated two categories of heterogeneity of fly ash produced from a fluidized bed combustor. They are the heterogeneity of a single fly ash particle body (intra-particle heterogeneity) and heterogeneity among fly ash particles (inter-particle heterogeneity). In the surface and semi-soluble components, Ca has smaller intra-particle heterogeneity than Al and Si. These results and ternary diagram analysis suggest that semi-soluble components consisted of mainly Ca-based matrices such as CaCO3 and unreacted Ca(OH)2 in which aluminosilicate domains. All major elements, excluding Fe and Ti, are 3–66% higher inter-particle heterogeneities on the surface than semi-soluble and insoluble core components. It shows that the surface component of the fly ash is more heterogeneous than other components of fly ash particles. Fly ash from fluidized bed combustor has intra- and inter-particle heterogeneity similar to stoker combustor. Besides, heterogeneity analysis can explain the fly ash formation process. Heterogeneity analysis suggests that Si plays more critical roles in the fly ash formation process of the fluidized bed combustor than that of the stoker combustor. Fly ash has heterogeneous bodies, and it might give non-negligible impacts on the leaching of metals included in fly ash components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Czop M, Łázniewska-Piekarczyk B (2019) Evaluation of the leachability of contaminations of fly ash and bottom ash from the combustion of solid municipal waste before and after stabilization process. Sustain 11:1–16. https://doi.org/10.3390/su11195384

    Article  Google Scholar 

  2. Silva RV, de Brito J, Lynn CJ, Dhir RK (2019) Environmental impacts of the use of bottom ashes from municipal solid waste incineration: a review. Resour Conserv Recycl 140:23–35

    Article  Google Scholar 

  3. Tang J, Su M, Wu Q et al (2019) Highly efficient recovery and clean-up of four heavy metals from MSWI fly ash by integrating leaching, selective extraction and adsorption. J Clean Prod 234:139–149. https://doi.org/10.1016/j.jclepro.2019.06.198

    Article  Google Scholar 

  4. MOE (Ministry of Environment Japan) (2019) Annual report of waste management in Japan (“Nihon no Haikibutu Shori”) 2017, pp 1–6 (In Japanese)

  5. Fujiwara H, Kuramochi H, Maeseto T et al (2018) Influence of the type of furnace on behavior of radioactive cesium in municipal solid waste thermal treatment. Waste Manag 81:41–52. https://doi.org/10.1016/j.wasman.2018.09.029

    Article  Google Scholar 

  6. Van Caneghem J, Brems A, Lievens P et al (2012) Fluidized bed waste incinerators: design, operational and environmental issues. Prog Energy Combust Sci 38:551–582. https://doi.org/10.1016/j.pecs.2012.03.001

    Article  Google Scholar 

  7. Lu C-H, Chuang K-H (2015) Effect of municipal solid waste incinerator types on characteristics of ashes from different air pollution control devices. Environ Technol 3330:1–8. https://doi.org/10.1080/09593330.2015.1070919

    Article  Google Scholar 

  8. Elomaa H, Seisko S, Lehtola J, Lundström M (2019) A study on selective leaching of heavy metals vs. iron from fly ash. J Mater Cycles Waste Manag 21:1004–1013. https://doi.org/10.1007/s10163-019-00858-w

    Article  Google Scholar 

  9. Zhao X, Wang L, Wang L, Zhang W (2017) Distribution of remaining Cd in MSWI fly ash washed with nitric acid. J Mater Cycles Waste Manag 19:1415–1422. https://doi.org/10.1007/s10163-016-0535-7

    Article  Google Scholar 

  10. Quina MJ, Bontempi E, Bogush A et al (2018) Technologies for the management of MSW incineration ashes from gas cleaning: new perspectives on recovery of secondary raw materials and circular economy. Sci Total Environ 635:526–542. https://doi.org/10.1016/j.scitotenv.2018.04.150

    Article  Google Scholar 

  11. Yin K, Dou X, Chan WP, Chang VWC (2019) Comparative leaching characteristics of fly/bottom ashes from municipal solid waste incineration under various environmental stresses. J Mater Cycles Waste Manag. https://doi.org/10.1007/s10163-019-00915-4

    Article  Google Scholar 

  12. Lindberg D, Molin C, Hupa M (2015) Thermal treatment of solid residues from WtE units: a review. Waste Manag 37:82–94. https://doi.org/10.1016/j.wasman.2014.12.009

    Article  Google Scholar 

  13. Dou X, Ren F, Nguyen MQ et al (2017) Review of MSWI bottom ash utilization from perspectives of collective characterization, treatment and existing application. Renew Sustain Energy Rev 79:24–38

    Article  Google Scholar 

  14. Jianguo J, Jun W, Xin X et al (2004) Heavy metal stabilization in municipal solid waste incineration flyash using heavy metal chelating agents. J Hazard Mater 113:141–146. https://doi.org/10.1016/j.jhazmat.2004.05.030

    Article  Google Scholar 

  15. Li R, Zhang B, Wang Y et al (2019) Leaching potential of stabilized fly ash from the incineration of municipal solid waste with a new polymer. J Environ Manag 232:286–294. https://doi.org/10.1016/j.jenvman.2018.11.036

    Article  Google Scholar 

  16. Ohbuchi A, Koike Y, Nakamura T (2019) Quantitative phase analysis of fly ash of municipal solid waste by X-ray powder diffractometry/Rietveld refinement. J Mater Cycles Waste Manag 21:829–837. https://doi.org/10.1007/s10163-019-00838-0

    Article  Google Scholar 

  17. Weibel G, Eggenberger U, Kulik DA et al (2018) Extraction of heavy metals from MSWI fly ash using hydrochloric acid and sodium chloride solution. Waste Manag 76:457–471

    Article  Google Scholar 

  18. Phua Z, Giannis A, Dong ZL et al (2019) Characteristics of incineration ash for sustainable treatment and reutilization. Environ Sci Pollut Res 26:16974–16997. https://doi.org/10.1007/s11356-019-05217-8

    Article  Google Scholar 

  19. Luo H, Cheng Y, He D, Yang EH (2019) Review of leaching behavior of municipal solid waste incineration (MSWI) ash. Sci Total Environ 668:90–103

    Article  Google Scholar 

  20. Ha J, Chae S, Chou KW et al (2016) Characterization of class F fly ash using STXM: identifying intraparticle heterogeneity at nanometer scale. J Nanomater. https://doi.org/10.1155/2016/8072518

    Article  Google Scholar 

  21. Fermo P, Cariati F, Pozzi A et al (2000) Analytical characterization of municipal solid waste incinerator fly ash. Part II. Fresenius J Anal Chem 366:267–272

    Article  Google Scholar 

  22. Rémond S, Pimienta P, Bentz D (2002) Effects of the incorporation of municipal solid waste incineration fly ash in cement pastes and mortars. Cem Concr Res 32:303–311. https://doi.org/10.1016/S0008-8846(01)00674-3

    Article  Google Scholar 

  23. Mahieux PY, Aubert JE, Cyr M et al (2010) Quantitative mineralogical composition of complex mineral wastes—contribution of the Rietveld method. Waste Manag 30:378–388. https://doi.org/10.1016/j.wasman.2009.10.023

    Article  Google Scholar 

  24. Kitamura H, Dahlan AV, Tian Y et al (2019) Intra- and inter-particle heterogeneity of municipal solid waste incineration fly ash particles. J Mater Cycles Waste Manag. https://doi.org/10.1007/s10163-019-00853-1

    Article  Google Scholar 

  25. Camerani MC, Golosio B, Somogyi A et al (2004) X-ray fluorescence tomography of individual municipal solid waste and biomass fly ash particles. Anal Chem 76:1586–1595. https://doi.org/10.1021/ac030282w

    Article  Google Scholar 

  26. Kitamura H, Sawada T, Shimaoka T, Takahashi F (2016) Geochemically structural characteristics of municipal solid waste incineration fly ash particles and mineralogical surface conversions by chelate treatment. Environ Sci Pollut Res 23:734–743. https://doi.org/10.1007/s11356-015-5229-5

    Article  Google Scholar 

  27. Kitamura H, Dahlan AV, Tian Y et al (2018) Impact of secondary generated minerals on toxic element immobilization for air pollution control fly ash of a municipal solid waste incinerator. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-018-1959-5

    Article  Google Scholar 

  28. Atanes E, Cuesta-García B, Nieto-Márquez A, Fernández-Martínez F (2019) A mixed separation-immobilization method for soluble salts removal and stabilization of heavy metals in municipal solid waste incineration fly ash. J Environ Manag 240:359–367. https://doi.org/10.1016/j.jenvman.2019.03.122

    Article  Google Scholar 

  29. Hu HY, Liu H, Shen WQ et al (2013) Comparison of CaO’s effect on the fate of heavy metals during thermal treatment of two typical types of MSWI fly ashes in China. Chemosphere 93:590–596. https://doi.org/10.1016/j.chemosphere.2013.05.077

    Article  Google Scholar 

  30. Wang L, Chen Q, Jamro IA et al (2016) Geochemical modeling and assessment of leaching from carbonated municipal solid waste incinerator (MSWI) fly ash. Environ Sci Pollut Res 23:12107–12119. https://doi.org/10.1007/s11356-016-6320-2

    Article  Google Scholar 

  31. Kitamura H, Dahlan AV, Tian Y et al (2017) Geochemical form analysis of titanium in chelate-treated municipal solid waste incineration fly ash particles employing correlation analysis of elemental distribution line profiles. J Jpn Soc Civ Eng 73:III_287–III_295. https://doi.org/10.2208/jscejer.73.III_287

    Article  Google Scholar 

  32. Chang FY, Wey MY (2006) Comparison of the characteristics of bottom and fly ashes generated from various incineration processes. J Hazard Mater 138:594–603. https://doi.org/10.1016/j.jhazmat.2006.05.099

    Article  Google Scholar 

  33. Cao J, Zhong W, Jin B et al (2014) Treatment of hydrochloric acid in flue gas from municipal solid waste incineration with Ca–Mg–Al mixed oxides at medium-high temperatures. Energy Fuels 28:4112–4117. https://doi.org/10.1021/ef5008193

    Article  Google Scholar 

  34. Nimmo W, Patsias AA, Hall WJ, Williams PT (2005) Characterization of a process for the in-furnace reduction of NOx, SO2, and HCl by carboxylic salts of calcium. Ind Eng Chem Res 44:4484–4494. https://doi.org/10.1021/ie0501780

    Article  Google Scholar 

  35. Zhang Y, Cetin B, Likos WJ, Edil TB (2016) Impacts of pH on leaching potential of elements from MSW incineration fly ash. Fuel 184:815–825. https://doi.org/10.1016/j.fuel.2016.07.089

    Article  Google Scholar 

  36. Astrup T, Dijkstra JJ, Comans RNJ et al (2006) Geochemical modeling of leaching from MSWI air-pollution-control residues. Environ Sci Technol 40:3551–3557. https://doi.org/10.1021/es052250r

    Article  Google Scholar 

  37. Wang L, Jin Y, Nie Y (2010) Investigation of accelerated and natural carbonation of MSWI fly ash with a high content of Ca. J Hazard Mater 174:334–343. https://doi.org/10.1016/j.jhazmat.2009.09.055

    Article  Google Scholar 

  38. Saffarzadeh A, Shimaoka T, Wei Y et al (2011) Impacts of natural weathering on the transformation/neoformation processes in landfilled MSWI bottom ash: a geoenvironmental perspective. Waste Manag 31:2440–2454. https://doi.org/10.1016/j.wasman.2011.07.017

    Article  Google Scholar 

  39. Yin K, Chan WP, Dou X et al (2018) Co-complexation effects during incineration bottom ash leaching via comparison of measurements and geochemical modeling. J Clean Prod 189:155–168. https://doi.org/10.1016/j.jclepro.2018.03.320

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by JSPS KAKENHI Grant numbers 15H04067 and 18H01567, and Xilingol vocational college, China. The authors appreciate them greatly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fumitake Takahashi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3872 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dahlan, A.V., Kitamura, H., Tian, Y. et al. Heterogeneities of fly ash particles generated from a fluidized bed combustor of municipal solid waste incineration. J Mater Cycles Waste Manag 22, 836–850 (2020). https://doi.org/10.1007/s10163-020-00973-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-020-00973-z

Keywords

Navigation