Skip to main content

Advertisement

Log in

Ecologically derived waste management of conventional plastics

  • REVIEW
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

The accumulation of plastic waste is a pressing environmental problem, growing hand-in-hand with the rising production and consumption of consumer products. The robustness and intrinsic strength of plastics, which render them extremely useful in various packaging applications, are a double-edged sword as they are likewise highly resistant to degradation and may persist for several millennia. Conventional waste treatment solutions are increasingly unable to manage the growing volume of such waste, bringing us to the brink of ecological disaster. Interestingly, environmental microorganisms are beginning to evolve their own biological means of thriving within such environments through production of metabolic intermediaries that enable them to utilize plastics as energy sources. Here, we present a brief review of the current literature, highlighting various micro- and multicellular organisms that have been found to degrade plastics, as well as propose some strategies for industrialization of these processes in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Plastics Europe (2018) Plastics the facts 2017. https://www.plasticseurope.org/application/files/5715/1717/4180/Plastics_the_facts_2017_FINAL_for_website_one_page.pdf Accessed 26 April 2019

  2. Arutchelvi J, Sudhakar M, Arkatkar A, Doble M, Bhaduri S, Uppara PV (2008) Biodegradation of polyethylene and polypropylene. Indian J Biotechnol 7:9–22. http://nopr.niscair.res.in/handle/123456789/7326

    Google Scholar 

  3. UNEP (2018) Single-use plastics. https://www.unenvironment.org/resources/report/single-use-plastics-roadmap-sustainability. Accessed 26 April 2019

  4. Beaumont NJ, Aanesen M, Austen MC, Borger T, Clark JR, Cole M, Hooper T, Lindeque PK, Pascoe C, Wyles KJ (2019) Global ecological, social, and economic impacts of marine plastic. Mar Pollut Bull 142:189–195

    Article  Google Scholar 

  5. World Economic Forum (2016) The New Plastics Economy. https://www.weforum.org/reports/the-new-plastics-economy-rethinking-the-future-of-plastics. Accessed 26 April 2019

  6. Watson R (2018) Time is running out: The U.S. landfill capacity crisis. Waste business journal. https://nrra.net/sweep/time-is-running-out-the-u-s-landfill-capacity-crisis/ Accessed 15 April 2019

  7. Mahmud AQ (2018) ‘Cannot sell so they burn’: what’s next in the uncertain future for plastic waste in Singapore? CNA. https://www.channelnewsasia.com/news/singapore/china-bans-plastic-waste-whats-next-for-recycling-in-singapore-10281026 Accessed 14 April 2019

  8. de Castella T (2011) Tipping point: what happens when our landfills are full? The telegraph. https://www.telegraph.co.uk/news/earth/businessandecology/recycling/8849010/Tipping-point-what-happens-when-our-landfills-are-full.html Accessed 14 April 2019

  9. Chen W, McCarthy TJ (1998) Chemical surface modifications of poly(ethylene terephthalate). Macromolecules 31:3648–3655

    Article  Google Scholar 

  10. Arkatkar A, Juwarkar AA, Bhaduri S, Uppara PV, Doble M (2010) Growth of Psuedomonas and Bacillus biofilms on pretreated polypropylene surface. Int Biodeterior Biodegrad 64:530–536

    Article  Google Scholar 

  11. Sheik S, Chandrashekar KR, Swaroop K, Somashekarappa HM (2015) Biodegradation of gamma irradiated low density polyethylene and polypropylene by endophytic fungi. Int Biodeterior Biodegrad 105:21–29

    Article  Google Scholar 

  12. Brueckner T, Eberl A, Heumann S, Rabe M, Guebitz GM (2008) Enzymatic and chemical hydrolysis of poly(ethylene terephthalate) fabrics. J Poly Sci 46:6435–6443

    Article  Google Scholar 

  13. Uekert T, Kuehnel MF, Wakerley DW, Reisner E (2018) Plastic waste as a feedstock for solar-driven H2 generation. Energy Environ 11:2853–2857

    Article  Google Scholar 

  14. Ali SS, Qazi IA, Arshad M, Khan Z, Voice TC, Mehmood CT (2016) Photocatalytic degradation of low density polyethylene (LDPE) films using titania nanotubes. Environ Nanotechnol Monit Manag 5:44–53

    Article  Google Scholar 

  15. Leja K, Lewandowicz G (2010) Polymer biodegradation and biodegradable polymers: a review. Pol J Environ Stud 19:255–266

    Google Scholar 

  16. Ronkvist AM, Xie W, Lu W, Gross RA (2009) Cutinase-catalyzed hydrolysis of poly(ethylene terephthalate). Macromolecules 42:5128–5138

    Article  Google Scholar 

  17. Emadian SM, Onay TT, Demirel B (2017) Biodegradation of bioplastics in natural environments. Waste Manage 59:526–536

    Article  Google Scholar 

  18. Bhardwaj H, Gupta R, Tiwari A (2012) Communities of microbial enzymes associated with biodegradation of plastics. J Polym Environ. https://doi.org/10.1007/s10924-012-0456-z

    Article  Google Scholar 

  19. Tokiwa Y, Calabia BP, Ugwu CU, Aiba S (2009) Biodegradability of plastics. Int J Mol Sci 10:3722–3742

    Article  Google Scholar 

  20. Arkatkar A, Arutchelvi J, Bhaduri S, Uppara PV, Doble M (2009) Degradation of unpretreated and thermally pretreated polypropylene by soil consortia. Int Biodeterior Biodegrad 63:106–111

    Article  Google Scholar 

  21. Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, Maeda Y, Toyohara K, Miyamoto K, Kimura Y, Oda K (2016) A bacteria that degrades and assimilates poly(ethylene terephthalate). Science 351:1196–1199

    Article  Google Scholar 

  22. Wei R, Zimmermann W (2017) Biocatalysis as a green route for recycling the recalcitrant plastic polyethylene terephthalate. Microb Biotechnol 10:1302–1307

    Article  Google Scholar 

  23. Sulaiman S, Yamato S, Kanaya E, Kim JJ, Koga Y, Takano K, Kanaya S (2012) Isolation of a novel cutinase homolog with polyethylene terephthalate-degrading activity from leaf-branch compost by using a metagenomic approach. Appl Environ Microbiol 78(5):1556–1562

    Article  Google Scholar 

  24. Muller RJ, Schrader H, Profe J, Dresler K, Deckwer WD (2005) Enzymatic degradation of poly(ethylene terephthalate): rapid hydrolyse using a hydrolyase from T. fusca. Macromol Rapid Commun 26:1400–1405

    Article  Google Scholar 

  25. Sulaiman S, You DJ, Kanaya E, Koga Y, Kanaya S (2014) Crystal structure and thermodynamic and kinetic stability of metagenome-derived LC-cutinase. Biochemistry 53:1858–1869

    Article  Google Scholar 

  26. Baker PJ, Poultney C, Liu Z, Gross R, Montclare JK (2012) Identification and comparison of cutinases for synthetic polyester degradation. Appl Microbiol Biotechnol 93:229–240

    Article  Google Scholar 

  27. Tanasupawat S, Takehana T, Yoshida S, Hiraga K, Oda K (2016) Ideonella sakaiensis sp. nov., isolated from a microbial consortium that degrades poly(ethylene terephthalate). Int J Syst Evol Microbiol 66:2813–2818

    Article  Google Scholar 

  28. Then J, Wei R, Oeser T, Barth M, Belisario-Ferrari MR, Schmidt J, Zimmermann W (2015) Ca2+ and Mg2+ binding site engineering increases the degradation of polyethylene terephthalate films by polyester hydrolases from Thermobifida fusca. Biotechnol J 10:592–598

    Article  Google Scholar 

  29. Harshvardhan K, Jha B (2013) Biodegradation of low-density polyethylene by marine bacteria from pelagic waters, Arabian Sea, India. Mar Pollut Bull 77:100–106

    Article  Google Scholar 

  30. Lwanga EH, Thapa B, Yang X, Gertsen H, Salanki T, Geissen V, Garbeva P (2018) Decay of low-density polyethylene by bacteria extracted from earthworm’s guts: a potential for soil restoration. Sci Total Environ 624:753–757

    Article  Google Scholar 

  31. Volke-Sepulveda T, Saucedo-Castaneda G, Gutierrez-Rojas M, Manzur A, Favela-Torres E (2002) Thermally treated low density polyethylene biodegradation by Penicillum pinophilum and Aspergillus niger. J Appl Polym Sci 83:305–314

    Article  Google Scholar 

  32. Gilan I, Hadar Y, Sivan A (2004) Colonization, biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber. Appl Microbiol Biotechnol 65:97–104

    Google Scholar 

  33. Hadad D, Geresh S, Sivan A (2005) Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. J Appl Microbiol 98:1093–1100

    Article  Google Scholar 

  34. Jeyakumar D, Chirsteen J, Doble M (2013) Synergistic effects of pretreatment and blending on fungi mediated biodegradation of polypropylenes. Bioresour Technol 148:78–85

    Article  Google Scholar 

  35. Cacciari I, Quatrini P, Zirletta G, Mincione E, Vinciguerra V, Lupattelli P, Sermanni GG (1993) Isotatic polypropylene biodegradation by a microbial community: physiochemical characterization of metabolites produced. Appl Environ Microbiol 59:3700–4695

    Article  Google Scholar 

  36. Atiq N, Ahmed S, Ali MI, Andleeb S, Ahmad B, Robson G (2010) Isolation and identification of polystyrene biodegrading bacteria from soil. Afr J Microbiol Res 4:1537–1541

    Google Scholar 

  37. Otake Y, Kobayashi T, Asabe H, Murakami N, Ono K (1995) Biodegradation of low-density polyethylene, polystyrene, polyvinyl chloride, and urea formaldehyde resin buried under soil for 32 years. J Appl Polym Sci 56:1789–1796

    Article  Google Scholar 

  38. Mor R, Sivan A (2008) Biofilm formation and partial biodegradation of polystyrene by the actinomycete Rhodococcus ruber. Biodegradation 19:851–858

    Article  Google Scholar 

  39. Schmidt FR (2005) Optimization and scale up of industrial fermentation process. Appl Microbiol Biotechnol 68:425–435

    Article  Google Scholar 

  40. Sabra S, Zeng AP (2015) Mixed microbial cultures for industrial biotechnology: success, chance, and challenges. In: Grunwald P (ed) Industrial biocatalysis. CRC Press, Boca Raton, pp 205–237

    Google Scholar 

  41. Yang J, Yang Y, Wu WM, Zhao J, Jiang L (2014) Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environ Sci Technol 48:13776–13784

    Article  Google Scholar 

  42. Bombelli P, Howe CJ, Bertocchini F (2017) Poly-ethylene biodegradation by caterpillars of the wax moth Galleria mellonella. Curr Biol 27:R83–R293

    Article  Google Scholar 

  43. Yang Y, Yang J, Wu WM, Zhao J, Song Y, Gao L, Yang R, Jiang L (2015) Biodegradation and mineralization of polystyrene by plastic-eating mealworms: part 1. chemical and physical characterization and isotopic tests. Environ Sci Technol 49:12080–12086

    Article  Google Scholar 

  44. Yang Y, Yang J, Wu WM, Zhao J, Song Y, Gao L, Yang R, Jiang L (2015) Biodegradation and mineralization of polystyrene by plastic-eating mealworms: part 2 role of gut microorganisms. Environ Sci Technol 49:12080–12086

    Article  Google Scholar 

  45. Akhtar Y, Isman MB (2018) Insects as an alternative protein source. In: Yada RY (ed) Proteins in food processing, vol 2. Elsevier, Amsterdam, pp 263–288

    Chapter  Google Scholar 

  46. Bergmann M, Gutow L, Klages M (2015) Marine anthropogenic litter. Springer, New York

    Book  Google Scholar 

  47. World Health Organization (2019) Health Effects of UV Radiation. https://www.who.int/uv/health/uv_health2/en/ Accessed 4 May 2019

  48. Pellis A, Gamerith C, Ghazaryan G, Ortner A, Acero EH, Guebitz GM (2016) Ultrasound-enhanced enzymatic hydrolysis of poly(ethylene terephthalate). Bioresourc Technol 218:1298–1302

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Entrepreneur First for funding support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei Shan Liew.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, A., Liew, M.S. Ecologically derived waste management of conventional plastics. J Mater Cycles Waste Manag 22, 1–10 (2020). https://doi.org/10.1007/s10163-019-00931-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-019-00931-4

Keywords

Navigation