Skip to main content

Advertisement

Log in

Effect of organic fraction of municipal solid waste (OFMSW)-based biochar on organic carbon mineralization in a dry land soil

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

The purpose of this study was to investigate the priming effects of organic fraction of municipal solid waste (OFMSW)-based biochar on mineralization of soil organic carbon (SOC) mineralization; an incubation experiment was conducted for 36 weeks in a dry land soil. Three OFMSW-based biochars (pyrolyzed at 600, 700 and 800 °C) at a rate of 0.5, 1 and 2 % (w/w) were applied to the soil. During the mid and late stages of incubation, the application of biochar significantly increased SOC (P < 0.05). At the end of incubation, compared to control, the biochar amendment increased SOC by 7.88–30.05 %. Among treatments, significant higher SOC was ranked as soil + BC800 > soil + BC700 > soil + BC600 while the SOC increased significantly with increasing application rates of biochar. However, during the first 2 weeks of incubation, SOC of biochar treatments decreased rapidly, but not in the control. The cumulative amounts of CO2 emissions are significantly reduced in the soil + 1 %BC and soil + 2 %BC. Biochar also improved soil quality parameters, such as pH, and cation exchange capacity (CEC). As a whole, our results demonstrated that biochar stimulates SOC mineralization in the dry land, but this effect decreases with time. Thus, it is concluded that the priming direction varied from positive to negative; in the long term, biochar amendment could suppress SOC mineralization. OFMSW-based biochar may be an appropriate management tool for increasing soil organic C storage, which is beneficial for fertilizing soil and fighting climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota—a review. Soil Biol Biochem 43:1812–1836. doi:10.1016/j.soilbio.2011.04.022

    Article  Google Scholar 

  2. Seiler W, Crutzen PJ (1980) Estimates of gross and net fluxes of carbon between the bioshere and the atmosphere from biomass burning. Clim Change 2:207–247. doi:10.1007/BF00137988

    Article  Google Scholar 

  3. Skjemstad JO, Reicosky DC, Wilts AR, McGowan JA (2002) Charcoal carbon in US agricultural soils. Soil Sci Soc Am J 66:1249–1255. doi:10.2136/sssaj2002.1249

    Article  Google Scholar 

  4. Skjemstad JO, Clarke P, Taylor JA, Oades JM, McClure ASG (1996) The chemistry and nature of protected carbon in soil. Aust J Soil Res 34:251–271. doi:10.1071/SR9960251

    Article  Google Scholar 

  5. Glaser B, Haumaier L, Guggenberger G, Zech W (1998) Black carbon in soils: the use of benzenecarboxylic acids as specific markers. Org Geochem 29:811–819. doi:10.1016/S0146-6380(98)00194-6

    Article  Google Scholar 

  6. Zimmerman AR, Gao B, Ahn MY (2011) Positive, negative carbon mineralization priming effects among a variety of biochar-amended soils. Soil Biol Biochem 43:1169–1179. doi:10.1016/j.soilbio.2011.02.005

    Article  Google Scholar 

  7. Steinbeiss S, Gleixner G, Antonietti M (2009) Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biol Biochem 41(6):1301–1310. doi:10.1016/j.soilbio.2009.03.016

    Article  Google Scholar 

  8. Jones DL, Murphy DV, Khalid M, Ahmad W, Edwards-Jones G, DeLuca TH (2011) Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated. Soil Biol Biochem 43:1723–1731. doi:10.1016/j.soilbio.2011.04.018

    Article  Google Scholar 

  9. Liang B, Lehmann J, Sohi SP et al (2010) Black carbon affects the cycling of non-black carbon in soil. Org Geochem 41(2):206–213. doi:10.1016/j.orggeochem.2009.09.007

    Article  Google Scholar 

  10. Lu W, Ding W, Zhang J, Li Y, Luo J, Bolan N, Xie Z (2014) Biochar suppressed the decomposition of organic carbon in a cultivated sandy loam soil: a negative priming effect. Soil Biol Biochem 76:12–21. doi:10.1016/j.soilbio.2014.04.029

    Article  Google Scholar 

  11. Aguilar-Chavez A, Diaz-Rojas M, Cardenas-Aquino MD, Dendooven L, Luna-Guido M (2012) Greenhouse gas emissions from a wastewater sludge-amended soil cultivated with wheat (Triticum spp. L.) as affected by different application rates of charcoal. Soil Biol Biochem 52:90–95. doi:10.1016/j.soilbio.2012.04.022

    Article  Google Scholar 

  12. Méndez A, Tarquis AM, Saa-Requejo A, Guerrero F, Gascó G (2013) Influence of pyrolysis temperature on composted sewage sludge biochar priming effect in a loamy soil. Chemosphere 93:668–676. doi:10.1016/j.chemosphere.2013.06.004

    Article  Google Scholar 

  13. Wang Z, Li Y, Chang SX, Zhang J, Jiang P, Zhou G, Shen Z (2014) Contrasting effects of bamboo leaf and its biochar on soil CO2 efflux and labile organic carbon in an intensively managed Chinese chestnut plantation. Biol Fertil Soils 50:1109–1119. doi:10.1007/s00374-014-0933-8

    Article  Google Scholar 

  14. Anderson CR, Condron LM, Clough TJ, Fiers M, Stewart A, Hill RA, Sherlock RR (2011) Biochar induced soil microbial community change: implications for biogeochemical cycling of carbon, nitrogen, phosphorus. Pedobiologia 54:309–320. doi:10.1016/j.pedobi.2011.07.005

    Article  Google Scholar 

  15. Ducey TF, Ippolito JA, Cantrell KB, Novak JM, Lentz RD (2013) Addition of activated switchgrass biochar to an aridic subsoil increases microbial nitrogen cycling gene abundances. Appl Soil Ecol 65:65–72. doi:10.1016/j.apsoil.2013.01.006

    Article  Google Scholar 

  16. Wei L, Shutao W, Jin Z, Tong X (2014) Biochar influences the microbial community structure during tomato stalk composting with chicken manure. Bioresour Technol 154:148–154. doi:10.1016/j.biortech.2013.12.022

    Article  Google Scholar 

  17. Lei O, Zhang RD (2013) Effects of biochars derived from different feedstocks and pyrolysis temperatures on soil physical and hydraulic properties. J Soils Sedim 13:1561–1572. doi:10.1007/s11368-013-0738-7

    Article  Google Scholar 

  18. Troy SM, Lawlor PG, O’Flynn CJ, Healy MG (2013) Impact of biochar addition to soil on greenhouse gas emissions following pig manure application. Soil Biology and Biochemistry 60:173–181. doi:10.1016/j.soilbio.2013.01.019

  19. Singh BP, Cowie AL (2014) Long-term influence of biochar on native organic carbon mineralisation in a low-carbon clayey soil. Sci Rep. doi:10.1038/srep03687

    Google Scholar 

  20. Bruun EW, Hauggaard-Nielsen H, Ibrahim N, Egsgaard H, Ambus P, Jensen PA, Dam-Johansen K (2011) Influence of fast pyrolysis temperature on biochar labile fraction and short-term carbon loss in a loamy soil. Biomass Bioenergy 35:82–1189. doi:10.1016/j.biombioe.2010.12.008

    Article  Google Scholar 

  21. Zheng JY, Stewart CE, Cotrufo MF (2012) Biochar and nitrogen fertilizer alters soil nitrogen dynamics and greenhouse gas fluxes from two temperate soils. J Environ Qual 41:1361–1370. doi:10.2134/jeq2012.0019

    Article  Google Scholar 

  22. McBeath AV, Smernik RJ, Krull ES, Lehmann J (2014) The influence of feedstock and production temperature on biochar carbon chemistry: a solid-state 13C NMR study. Biomass Bioenergy 60:121–129. doi:10.1016/j.biombioe.2013.11.002

    Article  Google Scholar 

  23. Yuan HR, Lu T, Zhao DD, Huang HY, Noriyuki K, Chen Y (2013) Influence of temperature on product distribution and biochar properties by municipal sludge pyrolysis. J Mater Cycles Waste 15(3):357–361. doi:10.1007/s10163-013-0126-9

    Article  Google Scholar 

  24. Choudhury ND, Chutia RS, Bhaskar T, Kataki R (2014) Pyrolysis of jute dust: effect of reaction parameters and analysis of products. J Mater Cycles Waste 16(3):449–459. doi:10.1007/s10163-014-0268-4

    Article  Google Scholar 

  25. Huang B, Li X, Wang L, Chui Z (2003) Analysis of physicochemical property and discussion of disposal of MSW in the urban zone of chongqing city. (in Chinese) J Chongqing Univ 26:9–13

  26. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319. doi:10.1021/ja01269a023

    Article  Google Scholar 

  27. Bengtsson G, Bengtson P, Månsson KF (2003) Gross nitrogen mineralization-, immobilization-, and nitrification rates as a function of soil C/N ratio and microbial activity. Soil Biol Biochem 35:143–154. doi:10.1016/S0038-0717(02)00248-1

    Article  Google Scholar 

  28. Borken W, Matzner E (2009) Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Glob Change Biol 15:808–824. doi:10.1111/j.1365-2486.2008.01681.x

    Article  Google Scholar 

  29. Case S, McNamara NP, Reay DS, Whitaker J (2012) The effect of biochar addition on N2O and CO2 emissions from a sandy loam soil—the role of soil aeration. Soil Biol Biochem 51:125–134. doi:10.1016/j.soilbio.2012.03.017

    Article  Google Scholar 

  30. Cross A, Sohi SP (2011) The priming potential of biochar products in relation to labile carbon contents and soil organic matter status. Soil Biol Biochem 43:2127–2134. doi:10.1016/j.soilbio.2011.06.016

    Article  Google Scholar 

  31. Kuzyakov Y, Subbotina I, Chen HQ, Bogomolova I, Xu XL (2009) Black carbon decomposition and incorporation into soil microbial biomass estimated by C-14 labeling. Soil Biol Biochem 41:210–219. doi:10.1016/j.soilbio.2008.10.016

    Article  Google Scholar 

  32. Yuan JH, Xu RK, Wang N, Li JY (2011) Amendment of acid soils with crop residues and biochars. Pedosphere 21(3):302–308. doi:10.1016/S1002-0160(11)60130-6

    Article  Google Scholar 

  33. Li XM, Shen QR, Zhang DQ, Mei XL, Ran W, Xu YC, Yu GH (2013) Functional groups determine biochar properties (pH and EC) as studied by two-dimensional C-13 NMR correlation spectroscopy. PLoS One. doi:10.1371/journal.pone.0065949

    Google Scholar 

  34. Liang B (2008) The Biogeochemistry of black carbon in soils. Cornell University, New York

    Google Scholar 

  35. Yu H, Ding W, Luo J, Geng R, Ghani A, Cai Z (2012) Effects of long-term compost and fertilizer application on stability of aggregate-associated organic carbon in an intensively cultivated sandy loam soil. Biol Fertil Soils 48:325–336. doi:10.1007/s00374-011-0629-2

    Article  Google Scholar 

  36. Tang Q, Liang ZL, Ouyang L, Zhang RD (2014) Effects of biochar’s physical structure and chemical constituenton soil N2O emission. (in Chinese) Acta Scientiae Circumstantiae 34(11):2839–2845

    Google Scholar 

  37. Koppolu L, Agblevor FA, Clements LD (2003) Pyrolysis as a technique for separating heavy metals from hyperaccumulators. Part II: lab-scale pyrolysis of synthetic hyperaccumulator biomass. Biomass Bioenergy 25:651–663. doi:10.1016/S0961-9534(03)00057-6

    Article  Google Scholar 

  38. Freddo A, Cai C, Reid BJ (2012) Environmental contextualisation of potential toxic elements and polycyclic aromatic hydrocarbons in biochar. Environ Pollut 171:18–24. doi:10.1016/j.envpol.2012.07.009

    Article  Google Scholar 

  39. Creamer RE, Rimmer DL, Black HIJ (2008) Do elevated soil concentrations of metals affect the diversity and activity of soil invertebrates in the long-term? Soil Use Manag 24:37–46. doi:10.1111/j.1475-2743.2007.00131.x

    Article  Google Scholar 

  40. Jin H (2010) Characterization of microbial life colonizing biochar and biochar amended soils. Cornell University, NY

    Google Scholar 

  41. Chen B, Zhou D, Zhu L (2008) Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environ Sci Technol 42:5137–5143. doi:10.1021/es8002684

    Article  Google Scholar 

  42. Chen B, Chen Z (2009) Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures. Chemosphere 76:127–133. doi:10.1016/j.chemosphere.2009.02.004

    Article  Google Scholar 

  43. Chen Z, Chen B, Zhou D (2013) Composition and sorption properties of rice-straw derived biochars. (in Chinese) Acta Scientiae Circumstantiae 33:9–19

    Google Scholar 

  44. Cho YK, Bailey JE (1978) Immobilization of enzymes on activated carbon: properties of immobilized glucoamylase, glucose oxidase, and gluconolactonase. Biotechnol Bioeng 20:1651–1665. doi:10.1002/bit.260201011

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Key Project of Natural Science Foundation of Chongqing (No. CSTC, 2011BA7020) and the 111 Project (No. B13041). We kindly thank the Key Laboratory of Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, Chongqing University, and National Centre for International Research of Low-carbon and Green Buildings, Chongqing University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengpei Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Xie, M. & Zhang, S. Effect of organic fraction of municipal solid waste (OFMSW)-based biochar on organic carbon mineralization in a dry land soil. J Mater Cycles Waste Manag 19, 473–482 (2017). https://doi.org/10.1007/s10163-015-0447-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-015-0447-y

Keywords

Navigation