Skip to main content
Log in

Investigations on enhanced in situ bioxidation of methane from landfill gas (LFG) in a lab-scale model

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

The performance of an exogenous bacterium, Methylobacterium extorquens, in inducing bioxidation of methane from landfill gas (LFG) was assessed in a laboratory scale bioreactor. The study show that enhanced oxidation of methane is attained when the bacteria are introduced into the landfill soil. The maximum percentage reduction of methane fraction from LFG when the bioreactor was inoculated with the methanotrophic bacteria was 94.24 % in aerobic treatment process and 99.97 % in anaerobic process. In the experiments with only the indigenous microorganisms present in the landfill soil, the maximum percentage reduction of methane for the same flow rate of LFG was 59.67 % in aerobic treatment and 45 % in anaerobic treatment. The methane oxidation efficiency of this exogenous methanotrophic bacterium can be considered to be the optimum in anaerobic condition and at a flow rate of 0.6 L/m2/min when the removal percentage is 99.95 %. The results substantiate the use of exogenous microorganisms as potential remediation agents of methane in LFG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Al-Yousfi AB, Pohland FG (1998) Strategies for simulation, design, and management of solid wastes disposal sites as landfill bioreactors. Pract Period Hazard Toxic Radioact Waste Manag 2(1):13–21

    Article  Google Scholar 

  2. Jain P, Powell J, Townsend TG, Reinhart DR (2005) Air permeability of waste in a municipal solid waste landfill. J Environ Eng 131(11):1565–1573

    Article  Google Scholar 

  3. Hac Ko J, Powell J, Jain P, Kim H, Townsend T, Reinhart D (2013) Case study of controlled air addition into landfilled municipal solid waste: design, operation, and control. J Hazard Toxic Radioact Waste 17(4):351–359

    Article  Google Scholar 

  4. Stein VB, Hettiaratchi JPA, Achari G (2001) Numerical model for biological oxidation and migration of methane in soils. Pract Period Hazard Toxic Radioact Waste Manag 5(4):225–234

    Article  Google Scholar 

  5. Bogner J, Spokas K (1993) Landfill CH4: rates, fates, and role in global carbon cycle. Chemosphere 26(1–4):369–384

    Article  Google Scholar 

  6. Morgan SM, Yang Q (2001) Use of landfill gas for electricity generation. Pract Period Hazard Toxic Radioact Waste Manag 5(1):14–24

    Article  Google Scholar 

  7. Spokas K, Bogner J, Chanton JP, Morcet M, Aran C, Graf C, Moreau-Le Golvan Y, Hebe I (2006) Methane mass balance at three landfill sites: what is the efficiency of capture by gas collection systems? Waste Manag 26(5):516–525

    Article  Google Scholar 

  8. Garg A, Achari G, Joshi RC (2007) Application of fuzzy logic to estimate flow of methane for energy generation at a sanitary landfill. J Energy Eng 133(4):212–223

    Article  Google Scholar 

  9. Albanna M, Fernandes L (2009) Effects of temperature, moisture content, and fertilizer addition on biological methane oxidation in landfill cover soils. Pract Period Hazard Toxic Radioact Waste Manag 13(3):187–195

    Article  Google Scholar 

  10. Babilotte A, Lagier T, Fiani E, Taramini V (2010) Fugitive methane emissions from landfills: field comparison of five methods on a french landfill. J Environ Eng 136(8):777–784

    Article  Google Scholar 

  11. Ramani T, Sprague S, Zietsman J, Kumar S, Kumar R, Krishnan A (2012) Landfill gas to energy applications in India: prefeasibility analysis of Mumbai landfills. J Hazard Toxic Radioact Waste 16(3):250–257

    Article  Google Scholar 

  12. Ozkaya B, Demir A, Bilgili MS (2007) Neural network prediction model for the methane fraction in biogas from field-scale landfill bioreactors. Environ Modell Softw 22(6):815–822

    Article  Google Scholar 

  13. Bogner JE, Meadows M, Czepiel P (1997) Fluxes of methane between landfills and the atmosphere: natural and engineered controls. Soil Use Manag 13(4):268–277

    Article  Google Scholar 

  14. Borjesson G, Svensson BH (1997) Seasonal and diurnal methane emissions from a landfill and their regulation by methane oxidation. Waste Manag Res 15(1):33–54

    Google Scholar 

  15. Hilger HA, Liehr SK, Barlaz MA (1999) Exopolysaccharide control of methane oxidation in landfill cover soil. J Environ Eng 125(12):1113–1123

    Article  Google Scholar 

  16. Abichou T, Powelson D, Chanton J, Escoriaza S, Stern J (2006) Characterization of methane flux and oxidation at a solid waste landfill. J Environ Eng 132(2):220–228

    Article  Google Scholar 

  17. Cabral AR, Moreira JFV, Jugnia LB (2010) Biocover performance of landfill methane oxidation: experimental results. J Environ Eng 136(8):785–793

    Article  Google Scholar 

  18. Jung Y, Imhoff PT, Augenstein DC, Yazdani R (2009) Influence of high-permeability layers for enhancing landfill gas capture and reducing fugitive methane emissions from landfills. J Environ Eng 135(3):138–146

    Article  Google Scholar 

  19. Roncato CDL, Cabral AR (2012) Evaluation of methane oxidation efficiency of two biocovers: field and laboratory results. J Environ Eng 138(2):164–173

    Article  Google Scholar 

  20. Yuan L, Abichou T, Chanton J, Powelson DK, De Visscher A (2009) Long-term numerical simulation of methane transport and oxidation in compost biofilter. Pract Period Hazard Toxic Radioact Waste Manag 13(3):196–202

    Article  Google Scholar 

  21. Visvanathan C, Pokhrel D, Hettiaratchi JPA, Wu JS (1999) Methanotrophic activities in tropical landfill cover soils: effects of temperature, moisture content and methane concentration. Waste Manag Res 17(4):313–323

    Article  Google Scholar 

  22. Chistoserdova L, Sung-Wei C, Lapidus A, Lidstrom ME (2003) Methylotrophy in Methylobacterium extorquens AM1 from a genomic point of view. J Bacteriol 185(10):2980–2987

    Article  Google Scholar 

  23. Korotkova N, Chistoserdova L, Lidstrom ME (2002) Poly-β-Hydroxybutyrate biosynthesis in the facultative methylotroph Methylobacterium extorquens AM1: identification and mutation of gap11, gap20 and phaR. J Bacteriol 184(22):6174–6181

    Article  Google Scholar 

  24. Corpe WA, Rheem S (1989) Ecology of the methylotrophic bacteria on living leaf surfaces. FEMS Microbiol Lett 62(4):243–249

    Article  Google Scholar 

  25. Patt TE, Cole GC, Hanson RS (1976) Methylobacterium, a new genus of facultatively methylotrophic bacteria. Int J Syst Bacteriol 26(2):226–229

    Article  Google Scholar 

  26. Smejkalová H, Erb TJ, Fuchs G (2010) Methanol assimilation in Methylobacterium extorquens am1: demonstration of all enzymes and their regulation. PLoS ONE 5(10):13001

    Article  Google Scholar 

  27. Sy A, Timmers ACJ, Knief C, Vorholt JA (2005) Methylotrophic metabolism is advantageous for Methylobacterium extorquens during colonization of Medicago truncatula under competitive conditions. Appl Environ Microbiol 71(11):7245–7252

    Article  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to the Director, National Centre for Earth Science Studies, for the support extended for this work. Thanks are due to BIOTECH, Trivandrum, India, for supplying biogas needed for the study and to the Centre for Environment and Development, Trivandrum, India, for providing landfill soil and leachate from their waste management facility. The authors thank Mr. George Thomas, Research Scholar, Centre for Earth Science Studies, Trivandrum, who analysed the LFG samples for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. K. Nair.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nair, D.N.K., Zachariah, E.J. & Vinod, P. Investigations on enhanced in situ bioxidation of methane from landfill gas (LFG) in a lab-scale model. J Mater Cycles Waste Manag 19, 172–179 (2017). https://doi.org/10.1007/s10163-015-0397-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-015-0397-4

Keywords

Navigation