Skip to main content
Log in

Microstructure properties of waste tire rubber composites: an overview

  • REVIEW
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

More than 1.5 billion tires are produced worldwide per year. This causes environmental pollution in the nature. Studies have shown that scrap tire rubbers can be used as aggregates in concrete mixtures and as modifiers in bituminous composites. Various studies were conducted for this reason and reported in the literature. The present study has been undertaken to examine the microstructure properties of rubberized asphalt and cement-based composites. Results showed that adhesion between rubber particles and cement matrix is significant for the final product properties. Also the physical and mechanical properties of asphalt composites can be improved with the addition of waste rubber into the mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Statistical summary of world rubber situation (2013) http://www.rubberstudy.com/documents/WebSiteData_2.0.pdf. Accessed 02 March 2014

  2. Karger-Kocsis J, Mészáros L, Bárány T (2013) Ground tyre rubber (GTR) in thermoplastics, thermosets and rubbers. J Mater Sci 48:1–38. doi:10.1007/s10853-12-6564-2

    Article  Google Scholar 

  3. Rubber Manufacturers Association (2013) US scrap tire management summary 2005–2009. Washington

  4. The recycling industry: a global view (2003) http://www.irevna.com/pdf/Industry%20report.pdf. Accessed 15 February 2014

  5. Nehdi M, Khan A (2001) Cementitious composites containing recycled tire rubber: an overview of engineering properties and potential application. Cem Concr Aggr 23:3–10. doi:10.1520/CCA10519J

    Google Scholar 

  6. Meyer C (2009) The greening of the concrete industry. Cem Concr Comp 31:601–605. doi:10.1016/j.cemconcomp.2008.12.010

    Article  Google Scholar 

  7. Reschner K (2008) Scrap tire recycling. A summary of prevalent disposal and recycling methods. Entire-Engineering, Berlin

    Google Scholar 

  8. Tantala MW, Lepore JA, Zandi I (1996) Quasi-elastic behavior of rubber included concrete. In: 12th international conference on solid waste technology and management, Philadelphia, PA

  9. Siddique R, Naik TR (2004) Properties of concrete containing scrap-tire rubber—an overview. Waste Manag 24:563–569. doi:10.1016/j.wasman.2004.01.006

    Article  Google Scholar 

  10. Ye Z, Kong X, Yu J, Wei L (2003) Microstructure and properties of desulfurized crumb rubber modified bitumen. J Wuhan Univ Tech Mater Sci Ed 18:83–85. doi:10.1007/BF02835097

    Google Scholar 

  11. Paul J (1985) Encyclopedia of polymer science and engineering. 14:787–802

  12. Siddique R (2008) Waste materials and by-products in concrete. Springer, Berlin

    Google Scholar 

  13. Sunthonpagasit N, Duffey MR (2004) Scrap tires to crumb rubber: feasibility analysis for processing facilities. Resour Conser Recycl 40:281–299. doi:10.1016/S0921-3449(03)00073-9

    Article  Google Scholar 

  14. Shu X, Huang B (2013) Recycling of waste tire rubber in asphalt and Portland cement concrete: an overview. Constr Build Mater. doi:10.1016/j.conbuildmat.2013.11.027

    Google Scholar 

  15. Diaconescu RM, Barbuta M, Harja M (2013) Prediction of properties of polymer concrete composite with tire rubber using neural networks. Mater Sci Eng B 178:1259–1267. doi:10.1016/j.mseb.2013.01.014

    Article  Google Scholar 

  16. Suparat T (2013) Waste tyre management in Thailand: a material flow analysis approach. Dissertation, Asian Institute of Technology, Thailand

  17. Nakao Y, Yamamoto K (2002) Waste tire and its collection systems. In: Nippon Steel technical report no. 86

  18. Huynh H, Raghavan D (1997) Durability of simulated shredded rubber tire in highly alkaline environments. Adv Cem Bas Mater 6:138–143. doi:10.1016/S1065-7355(97)90021-3

    Article  Google Scholar 

  19. Lo Presti D (2013) Recycled tyre rubber modified bitumens for road asphalt mixtures: a literature review. Con Build Mat 49:863–881. doi:10.1016/j.conbuildmat.2013.09.007

    Article  Google Scholar 

  20. Epps JA (1994) Use of recycled tires in highways. Synthesis of Highway Practice 198, Transportation Research Board, National Research Council, Washington

    Google Scholar 

  21. Khatib ZK, Bayomy FM (1999) Rubberized Portland cement concrete. ASCE J Mater Civ Eng 11:206–213. doi:10.1061/(ASCE)0899-1561(1999)11:3(206

    Article  Google Scholar 

  22. Huang B, Li G, Pang S, Eggers J (2004) Investigation into waste tire rubber-filled concrete. ASCE J Mater Civ Eng 16:187–194. doi:10.1061/(ASCE)0899-1561(2004)16:3(187

    Article  Google Scholar 

  23. Lo Presti D, Airey G, Partal P (2012) Manufacturing terminal and field bitumen-tyre rubber blends: the importance of processing conditions. Pro Soc Behav Sci 53:485–494. doi:10.1016/j.sbspro.2012.09.899

    Article  Google Scholar 

  24. Adams C, Amos AD, Shuler S (1985) Asphalt rubber binder laboratory performance. Report FHWA/TX-8571, 347-1F, Department of Highways and Public Transportation, Texas

  25. Wu S, Ye Q, Li N (2008) Investigation of rheological and fatigue properties of asphalt mixtures containing polyester fibers. Constr Build Mater 22:2111–2115. doi:10.1016/j.conbuildmat.2007.07.018

    Article  Google Scholar 

  26. Rodriguez Alloza AM, Gallego J, Pérez I, Bonati A, Giuliani F (2014) High and low temperature properties of crumb rubber modified binders containing warm mix asphalt additives. Constr Build Mater 53:460–466. doi:10.1016/j.conbuildmat.2013.12.026

    Article  Google Scholar 

  27. Fedroff D, Ahmad S, Savas BZ (1996) Mechanical properties of concrete with ground waste tire rubber. Trans Res Rec 1532:66–72. doi:10.3141/1532-10

    Article  Google Scholar 

  28. Liu H, Chen Z, Wang W, Wang H, Hao P (2013) Investigation of the rheological modification mechanism of crumb rubber modified asphalt (CRMA) containing TOR additive. Constr Build Mater. doi:10.1016/j.conbuildmat.2013.11.031

    Google Scholar 

  29. Seo Kim H, Geiger A, Amirkhanian SN, Soon Park T, Woo Kim K (2008) Effects of asphalt ratios on properties of crumb rubber modified asphalts. In: Proceedings of the 6th international conference on road and airfield pavement technology, Sapporo Japan

  30. Abdelrahman MA, Carpenter SH (1998) Controlling low temperature properties of asphalt rubber binders. In: Proceedings of the 2nd transportation specialty conference, Canadian Society of Civil Engineering, Halifax, Nova Scotia, Canada

  31. Hernández-Olivares F, Barluenga G (2004) Fire performance of recycled rubber-filled high-strength concrete. Cem Concr Res 34:109–117. doi:10.1016/S0008-8846(03)00253-9

    Article  Google Scholar 

  32. Ganjian E, Khorami M, Maghsoudi A (2009) Scrap-tire-rubber replacement for aggregate and filler in concrete. Constr Build Mater 23:1828–1836. doi:10.1016/j.conbuildmat.2008.09.020

    Article  Google Scholar 

  33. Bravo M, De Brito J (2012) Concrete made with used tyre aggregate: durability-related performance. J Clean Prod 25:42–50. doi:10.1016/j.jclepro.2011.11.066

    Article  Google Scholar 

  34. Ali NA, Amos AD, Roberts M (1993) Use of ground rubber tires in portland cement concrete. In: Proceedings of the international conference on concrete 2000, University of Dundee, Scotland, p 379–390

  35. Rostami H, Lepore J, Silverstraim T, Zundi I (1993) Use of recycled tires in concrete. In: International conference on concrete 2000, University of Dundee, Scotland, p 391–399

  36. Eldin NN, Senouci AB (1993) Rubber-tire particles as concrete aggregates. ASCE J Mater Civ Eng 5:478–496. doi:10.1061/(ASCE)0899-1561(1993)5:4(478

    Article  Google Scholar 

  37. Topçu İB (1995) The properties of rubberized concrete. Cem Concr Res 25:304–310. doi:10.1016/0008-8846(95)00014-3

    Article  Google Scholar 

  38. De Brito J, Saikia N (2013) Recycled aggregate in concrete: use of industrial, construction and demolition waste. Springer, London

    Book  Google Scholar 

  39. Topçu İB, Avcular N (1997) Analyses of rubberized concrete as a composite material. Cem Concr Res 27:1135–1139. doi:10.1016/S0008-8846(97)00115-4

    Article  Google Scholar 

  40. Topçu İB (1997) Assessment of the brittleness index of rubberized concretes. Cem Concr Res 27:177–183. doi:10.1016/S0008-8846(96)00199-8

    Article  Google Scholar 

  41. Liu F, Zheng W, Li L, Feng W, Ning G (2013) Mechanical and fatigue performance of rubber concrete. Constr Build Mater 47:711–719. doi:10.1016/j.conbuildmat.2013.05.055

    Article  Google Scholar 

  42. Toutanji HA (1996) The use of rubber tire particles in concrete to replace mineral aggregates. Cem Concr Comp 18:135–139. doi:10.1016/0958-9465(95)00010-0

    Article  Google Scholar 

  43. Ho AC, Turatsinze A, Hameed R, Vu DC (2012) Effects of rubber aggregates from grinded used tyres on the concrete resistance to cracking. J Clean Prod 23:209–215. doi:10.1016/j.jclepro.2011.09.016

    Article  Google Scholar 

  44. Khaloo AR, Dehestani M, Rahmatabadi P (2008) Mechanical properties of concrete containing a high volume of tire-rubber particles. Waste Manag 28:2472–2482. doi:10.1016/j.wasman.2008.01.015

    Article  Google Scholar 

  45. Issa CA, Salem G (2013) Utilization of recycled crumb rubber as fine aggregates in concrete mix design. Constr Build Mater 42:48–52. doi:10.1016/j.conbuildmat.2012.12.054

    Article  Google Scholar 

  46. Segre N, Joekes I (2000) Use of tire rubber particles and addition to cement paste. Cem Concr Res 30:1421–1425. doi:10.1016/S0008-8846(00)00373-2

    Article  Google Scholar 

  47. Raghavan D, Huynh H, Ferraris CF (1998) Workability, mechanical properties and chemical stability of a recycled tyre rubber filled cementitious composite. J Mater Sci 33:1745–1752. doi:10.1023/A:1004372414475

    Article  Google Scholar 

  48. Mehta PK, Gjorv OE (1982) Properties of portland cement concrete containing fly ash and condensed silica fume. Cem Concr Res 12:587–595. doi:10.1016/0008-8846(82)90019-9

    Article  Google Scholar 

  49. Huang B, Shu X, Cao J (2013) A two-staged surface treatment to improve properties of rubber modified cement composites. Constr Build Mater 40:270–274. doi:10.1016/j.conbuildmat.2012.11.014

    Article  Google Scholar 

  50. Güneyisi E, Gesoğlu M, Özturan T (2004) Properties of rubberized concretes containing silica fume. Cem Concr Res 34:2309–2317. doi:10.1016/j.cemconres.2004.04.005

    Article  Google Scholar 

  51. Pelisser F, Zavarise N, Longo TA, Bernardin AM (2011) Concrete made with recycled tire rubber: effect of alkaline activation and silica fume addition. J Clean Prod 19:757–763. doi:10.1016/j.jclepro.2010.11.014

    Article  Google Scholar 

  52. Navarro FJ, Partal P, Boza FM, Valencia C, Gallegos C (2002) Rheological characteristics of ground tire rubber-modified bitumens. Chem Eng J 89:53–61. doi:10.1016/S1385-8947(02)00023-2

    Article  Google Scholar 

  53. Moro FJL, Moro MC, Olivares FH, Schultz BW, Fernández MA (2013) Microscopic analysis of the interaction between crumb rubber and bitumen in asphalt mixtures using the dry process. Constr Build Mater 48:691–699. doi:10.1016/j.conbuildmat.2013.07.041

    Article  Google Scholar 

  54. Xiang L, Cheng J, Que G (2009) Microstructure and performance of crumb rubber modified asphalt. Constr Build Mater 23:3586–3590. doi:10.1016/j.conbuildmat.2009.06.038

    Article  Google Scholar 

  55. Albano C, Camacho N, Reyes C, Feliu JL, Hernández M (2005) Influence of scrap rubber addition to portland I concrete composites: destructive and non-destructive testing. Comp Struct 71:439–446. doi:10.1016/j.compstruct.2005.09.037

    Article  Google Scholar 

  56. Turatsinze A (2005) Mechanical characterization of cement-based mortar incorporating rubber aggregates from recycled worn tyres. Build Environ 40:221–226. doi:10.1016/j.buildenv.2004.05.012

    Article  Google Scholar 

  57. Bignozzi MC, Sandrolini F (2006) Tyre rubber waste recycling in self-compacting concrete. Cem Concr Res 36:735–739. doi:10.1016/j.cemconres.2005.12.011

    Article  Google Scholar 

  58. Turki M, Bretagne E, Rouis MJ, Quéneudec M (2009) Microstructure, physical and mechanical properties of mortar-rubber aggregates mixtures. Constr Build Mater 23:2715–2722. doi:10.1016/j.conbuildmat.2008.12.019

    Article  Google Scholar 

  59. Li G, Stubblefield MA, Garrick G, Eggers J, Abadie C, Huang B (2004) Development of waste tire modified concrete. Cem Concr Res 34:2283–2289. doi:10.1016/j.cemconres.2004.04.013

    Article  Google Scholar 

  60. Li Z, Li F, Li JS (1998) Properties of concrete incorporating rubber tyre particles. Mag Concr Res 50:297–304. doi:10.1680/macr.1998.50.4.297

    Article  Google Scholar 

  61. Shen W, Shan L, Zhang T, Ma H, Cai Z, Shi H (2013) Investigation on polymer-rubber aggregate modified porous concrete. Constr Build Mater 38:667–674. doi:10.1016/j.conbuildmat.2012.09.006

    Article  Google Scholar 

  62. Chou LH, Yang CK, Lee MT, Shu CC (2010) Effects of partial oxidation of crumb rubber on properties of rubberized mortar. Comp Part B 41:613–616. doi:10.1016/j.compositesb.2010.09.009

    Article  Google Scholar 

  63. Benazzouk A, Douzane O, Langlet T, Mezreb K, Roucoult JM, Quéneudec M (2007) Physico-mechanical properties and water absorbtion of cement composite containing shredded rubber wastes. Cem Concr Comp 29:732–740. doi:10.1016/j.cemconcomp.2007.07.001

    Article  Google Scholar 

  64. Benazzouk A, Douzane O, Quéneudec M (2004) Transport of fluids in cement-rubber composites. Cem Concr Comp 26:21–29. doi:10.1016/S0958-9465(02)00119-1

    Article  Google Scholar 

  65. Isayev AI (2013) Recycling of rubbers. In: The science and technology of rubber, 4th edn, Chapter 15, Elsevier, pp 697–764

  66. Torgal FP, Ding Y, Jalali S (2012) Properties and durability of concrete containing polymeric wastes (tyre rubber and polyethylene terephthalate bottles): an overview. Constr Build Mater 30:714–724. doi:10.1016/j.conbuildmat.2011.11.047

    Article  Google Scholar 

  67. Reda Taha MM, El-Dieb AS, Abd El-Wahab MA, Abdel Hameed ME (2008) Mechanical, fracture, and microstructural investigations of rubber concrete. J Mater Civ Eng 20:640–649. doi:10.1061/(ASCE)0899-1561(2008)20:10(640

    Article  Google Scholar 

  68. Hernández Oliveras F, Barluenga G, Bollati M, Witoszek B (2002) Static and dynamic behavior of recycled tyre rubber-filled concrete. Cem Concr Res 32:1587–1596. doi:10.1016/S0008-8846(02)00833-5

    Article  Google Scholar 

  69. Holmes N, Dunne K, O’Donnell J (2014) Longitudinal shear resistance of composite slabs containing crumb rubber in concrete toppings. Constr Build Mater 55:365–378. doi:10.1016/j.conbuildmat.2014.01.046

    Article  Google Scholar 

  70. Segre N, Ostertag C, Monteiro P (2006) Effect of tire rubber particles on crack propagation in cement paste. Mater Res 9:311–320. doi:10.1590/S1516-14392006000300011

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cenk Karakurt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karakurt, C. Microstructure properties of waste tire rubber composites: an overview. J Mater Cycles Waste Manag 17, 422–433 (2015). https://doi.org/10.1007/s10163-014-0263-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-014-0263-9

Keywords

Navigation