Skip to main content
Log in

Neural Correlates of the Binaural Masking Level Difference in Human Frequency-Following Responses

  • Research Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

The binaural masking level difference (BMLD) is an auditory phenomenon where binaural tone-in-noise detection is improved when the phase of either signal or noise is inverted in one of the ears (SπNo or SoNπ, respectively), relative to detection when signal and noise are in identical phase at each ear (SoNo). Processing related to BMLDs and interaural time differences has been confirmed in the auditory brainstem of non-human mammals; in the human auditory brainstem, phase-locked neural responses elicited by BMLD stimuli have not been systematically examined across signal-to-noise ratio. Behavioral and physiological testing was performed in three binaural stimulus conditions: SoNo, SπNo, and SoNπ. BMLDs at 500 Hz were obtained from 14 young, normal-hearing adults (ages 21–26). Physiological BMLDs used the frequency-following response (FFR), a scalp-recorded auditory evoked potential dependent on sustained phase-locked neural activity; FFR tone-in-noise detection thresholds were used to calculate physiological BMLDs. FFR BMLDs were significantly smaller (poorer) than behavioral BMLDs, and FFR BMLDs did not reflect a physiological release from masking, on average. Raw FFR amplitude showed substantial reductions in the SπNo condition relative to SoNo and SoNπ conditions, consistent with negative effects of phase summation from left and right ear FFRs. FFR amplitude differences between stimulus conditions (e.g., SoNo amplitude–SπNo amplitude) were significantly predictive of behavioral SπNo BMLDs; individuals with larger amplitude differences had larger (better) behavioral B MLDs and individuals with smaller amplitude differences had smaller (poorer) behavioral B MLDs. These data indicate a role for sustained phase-locked neural activity in BMLDs of humans and are the first to show predictive relationships between behavioral BMLDs and human brainstem responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

Abbreviations

BMLD:

Binaural masking level difference

FFR:

Frequency-following response

P(C):

Proportion correct

SNR:

Signal-to-noise ratio

BAEP:

Brainstem auditory evoked potential

MSO:

Medial superior olive

IC:

Inferior colliculus

ITD:

Interaural time difference

References

  • Aiken SJ, Picton TW (2008) Envelope and spectral frequency-following responses to vowel sounds. Hear Res 245:35–47

    Article  PubMed  Google Scholar 

  • Ashida G, Funabiki K, Carr CE (2013a) Biophysical basis of the sound analog membrane potential that underlies coincidence detection in the barn owl. Front Comput Neurosci 7:102. doi:10.3389/fncom.2013.00102

    PubMed  PubMed Central  Google Scholar 

  • Ashida G, Funabiki K, Carr CE (2013b) Theoretical foundations of the sound analog membrane potential that underlies coincidence detection in the barn owl. Front Comput Neurosci 7:151. doi:10.3389/fncom.2013.00151

    PubMed  PubMed Central  Google Scholar 

  • Ashida G, Funabiki K, Kuokkanen PT, Kempter R, Carr CE (2012) Signal-to-noise ratio in the membrane potential of the owl’s auditory coincidence detectors. J Neurophysiol 108:2837–2845. doi:10.1152/jn.00366.2012

    Article  PubMed  PubMed Central  Google Scholar 

  • Ballachanda BB, Moushegian G (2000) Frequency-following response: effects of interaural time and intensity differences. J Am Acad Audiol 11:1–11

    CAS  PubMed  Google Scholar 

  • Batra R, Kuwada S, Maher VL (1986) The frequency-following response to continuous tones in humans. Hear Res 21:167–177

    Article  CAS  PubMed  Google Scholar 

  • Belliveau LA, Lyamzin DR, Lesica NA (2014) The neural representation of interaural time differences in gerbils is transformed from midbrain to cortex. J Neurosci 34:16796–16808

    Article  PubMed  PubMed Central  Google Scholar 

  • Bernstein LR, Trahiotis C (1996) The normalized correlation: accounting for binaural detection across center frequency. J Acoust Soc Am 100:3774–3784

    Article  CAS  PubMed  Google Scholar 

  • Bernstein LR, Trahiotis C, Freyman RL (2006) Binaural detection of 500-Hz tones in broadband and in narrowband masking noise: effects of signal/masker duration and forward masking fringes. J Acoust Soc Am 119:2981–2993

    Article  PubMed  Google Scholar 

  • Brand A, Behrend O, Marquardt T, McAlpine D, Grothe B (2002) Precise inhibition is essential for microsecond interaural time difference coding. Nature 417:543–547. doi:10.1038/417543a

    Article  CAS  PubMed  Google Scholar 

  • Buss E, Hall JW 3rd, Grose JH (2007) Individual differences in the masking level difference with a narrowband masker at 500 or 2000 Hz. J Acoust Soc Am 121:411–419

    Article  PubMed  PubMed Central  Google Scholar 

  • Caird DM, Palmer AR, Rees A (1991) Binaural masking level difference effects in single units of the guinea pig inferior colliculus. Hear Res 57:91–106

    Article  CAS  PubMed  Google Scholar 

  • Clinard CG, Tremblay K, Krishnan A (2010) Aging alters the perception and physiological representation of frequency: evidence from human FFR recordings. Hear Res 264:48–55

    Article  PubMed  Google Scholar 

  • Dobie RA, Wilson MJ (1989) Analysis of auditory evoked potentials by magnitude-squared coherence. Ear Hear 10:2–13

    Article  CAS  PubMed  Google Scholar 

  • Dobie RA, Wilson MJ (1996) A comparison of t test, F test, and coherence methods of detecting steady-state auditory-evoked potentials, distortion-product otoacoustic emissions, or other sinusoids. J Acoust Soc Am 100:2236–2246

    Article  CAS  PubMed  Google Scholar 

  • Du Y, Huang Q, Wu X, Galbraith GC, Li L (2009a) Binaural unmasking of frequency-following responses in rat amygdala. J Neurophysiol 101:1647–1659

    Article  PubMed  Google Scholar 

  • Du Y, Ma T, Wang Q, Wu X, Li L (2009b) Two crossed axonal projections contribute to binaural unmasking of frequency-following responses in rat inferior colliculus. Eur J Neurosci 30:1779–1789

    Article  PubMed  Google Scholar 

  • Dubno JR, Ahlstrom JB, Horwitz AR (2008) Binaural advantage for younger and older adults with normal hearing. J Speech Lang Hear Res 51:539–556

    Article  PubMed  Google Scholar 

  • Durlach NI (1963) Equalization and cancellation theory of binaural masking-level differences. J Acoust Soc Am 35:1206–1218

    Article  Google Scholar 

  • Epp B, Yasin I, Verhey JL (2013) Objective measures of binaural masking level differences and comodulation masking release based on late auditory evoked potentials. Hear Res 306:21–28

    Article  PubMed  Google Scholar 

  • Fisher NI (1993) Statistical analysis of circular data. Cambridge University Press, New York

    Book  Google Scholar 

  • Fowler CG, Mikami CM (1992) Effects of noise bandwidth on the late-potential masking level difference. Electroencephalogr Clin Neurophysiol 84:157–163

    Article  CAS  PubMed  Google Scholar 

  • Fowler CG, Mikami CM (1996) Phase effects on the middle and late auditory evoked potentials. J Am Acad Audiol 7:23–30

    CAS  PubMed  Google Scholar 

  • Franken TP, Roberts MT, Wei L, Golding NL, Joris PX (2015) In vivo coincidence detection in mammalian sound localization generates phase delays. Nat Neurosci 18:444–452. doi:10.1038/nn.3948

    CAS  PubMed  PubMed Central  Google Scholar 

  • Funabiki K, Ashida G, Konishi M (2011) Computation of interaural time difference in the owl’s coincidence detector neurons. J Neurosci 31:15245–15256. doi:10.1523/JNEUROSCI.2127-11.2011

    Article  CAS  PubMed  Google Scholar 

  • Gilbert HJ, Shackleton TM, Krumbholz K, Palmer AR (2015) The neural substrate for binaural masking level differences in the auditory cortex. J Neurosci 35:209–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gockel HE, Muhammed L, Farooq R, Plack CJ, Carlyon RP (2013) No evidence for ITD-specific adaptation in the frequency following response. Adv Exp Med Biol 787:231–238

    Article  PubMed  Google Scholar 

  • Goldwyn JH, Mc Laughlin M, Verschooten E, Joris PX, Rinzel J (2014) A model of the medial superior olive explains spatiotemporal features of local field potentials. J Neurosci 34:11705–11722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray L, Kesser B, Cole E (2009) Understanding speech in noise after correction of congenital unilateral aural atresia: effects of age in the emergence of binaural squelch but not in use of head-shadow. Int J Pediatr Otorhinolaryngol 73:1281–1287. doi:10.1016/j.ijporl.2009.05.024

    Article  PubMed  Google Scholar 

  • Guo Y, Burkard R (2003) The masking level difference in chinchilla auditory cortex. Effects of inner hair cell loss. Hear Res 178:12–26

    Article  PubMed  Google Scholar 

  • Hirsh IJ (1948) Binaural summation and interaural inhibition as a function of the noise level of the masking noise. Am J Psychol 56:205–213

    Article  Google Scholar 

  • Hughes LE, Rowe JB, Ghosh BC, Carlyon RP, Plack CJ, Gockel HE (2014) The binaural masking level difference: cortical correlates persist despite severe brain stem atrophy in progressive supranuclear palsy. J Neurophysiol 112:3086–3094

    Article  PubMed  PubMed Central  Google Scholar 

  • Ishida IM, Stapells DR (2009) Does the 40-Hz auditory steady-state response show the binaural masking level difference? Ear Hear 30:713–715. doi:10.1097/AUD.0b013e3181b61cc8

    Article  PubMed  Google Scholar 

  • Jeffress LA (1948) A place theory of sound localization. Journal of Comparative and Physiological Psychology 41:35–39

    Article  CAS  PubMed  Google Scholar 

  • Jiang D, McAlpine D, Palmer AR (1997a) Detectability index measures of binaural masking level difference across populations of inferior colliculus neurons. J Neurosci 17:9331–9339

    CAS  PubMed  Google Scholar 

  • Jiang D, McAlpine D, Palmer AR (1997b) Responses of neurons in the inferior colliculus to binaural masking level difference stimuli measured by rate-versus-level functions. J Neurophysiol 77:3085–3106

    CAS  PubMed  Google Scholar 

  • John MS, Lins OG, Boucher BL, Picton TW (1998) Multiple auditory steady-state responses (MASTER): stimulus and recording parameters. Audiology 37:59–82

    Article  CAS  PubMed  Google Scholar 

  • John MS, Picton TW (2000) MASTER: a Windows program for recording multiple auditory steady-state responses. Comput Methods Prog Biomed 61:125–150

    Article  CAS  Google Scholar 

  • Kan A, Litovsky RY (2015) Binaural hearing with electrical stimulation. Hear Res 322:127–137

    Article  PubMed  Google Scholar 

  • Kevanishvili Z, Lagidze Z (1987) Masking level difference: an electrophysiological approach. Scand Audiol 16:3–11

    Article  CAS  PubMed  Google Scholar 

  • Krishnan A (2007) Frequency-following response. In: Burkard RF, Eggermont JJ, Don M (eds) Auditory evoked potentials: basic principles and clinical application. Lippincott Williams & Wilkins, Baltimore, pp. 313–333

    Google Scholar 

  • Krishnan A, Xu Y, Gandour JT, Cariani PA (2005) Encoding of pitch in the human brainstem is sensitive to language experience. Cogn Brain Res 25:161–168

    Article  Google Scholar 

  • Kuokkanen PT, Ashida G, Carr CE, Wagner H, Kempter R (2013) Linear summation in the barn owl’s brainstem underlies responses to interaural time differences. J Neurophysiol 110:117–130. doi:10.1152/jn.00410.2012

    Article  PubMed  PubMed Central  Google Scholar 

  • Langford TL (1984) Responses elicited from medial superior olivary neurons by stimuli associated with binaural masking and unmasking. Hear Res 15:39–50

    Article  CAS  PubMed  Google Scholar 

  • Leek MR, Hanna TE, Marshall L (1992) Estimation of psychometric functions from adaptive tracking procedures. Percept Psychophys 51:247–256

    Article  CAS  PubMed  Google Scholar 

  • Levitt H (1971) Transformed up-down methods in psychoacoustics. J Acoust Soc Am 49:467–477

    Article  Google Scholar 

  • Licklider JCR (1948) The influence of interaural phase relations upon the masking of speech by white noise. J Acoust Soc Am 20:150–159

    Article  Google Scholar 

  • Litovsky R, McAlpine D (2010) Physiological correlates of the precedence effect and binaural masking level differences. In: Rees A, Palmer AR (eds) The Oxford handbook of auditory science—the auditory brain, vol 2. Oxford University Press, New York, pp. 333–357

    Google Scholar 

  • Lu T, Litovsky R, Zeng FG (2010) Binaural masking level differences in actual and simulated bilateral cochlear implant listeners. J Acoust Soc Am 127:1479–1490

    Article  PubMed  PubMed Central  Google Scholar 

  • Marsh JT, Brown WS, Smith JC (1975) Far-field recorded frequency-following responses: correlates of low pitch auditory perception in humans. Electroencephalogr Clin Neurophysiol 38:113–119

    Article  CAS  PubMed  Google Scholar 

  • McAlpine D, Jiang D, Palmer AR (1996) Binaural masking level differences in the inferior colliculus of the guinea pig. J Acoust Soc Am 100:490–503

    Article  CAS  PubMed  Google Scholar 

  • Moore BCJ (2003) An introduction to the psychology of hearing, 5th edn. Academic Press, San Diego, CA

    Google Scholar 

  • Myoga MH, Lehnert S, Leibold C, Felmy F, Grothe B (2014) Glycinergic inhibition tunes coincidence detection in the auditory brainstem. Nat Commun 5:3790. doi:10.1038/ncomms4790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer AR, Jiang D, McAlpine D (2000) Neural responses in the inferior colliculus to binaural masking level differences created by inverting the noise in one ear. J Neurophysiol 84:844–852

    CAS  PubMed  Google Scholar 

  • Pichora-Fuller MK, Schneider BA (1991) Masking-level differences in the elderly: a comparison of antiphasic and time-delay dichotic conditions. J Speech Hear Res 34:1410–1422

    Article  CAS  PubMed  Google Scholar 

  • Pichora-Fuller MK, Schneider BA (1992) The effect of interaural delay of the masker on masking-level differences in young and old adults. J Acoust Soc Am 91:2129–2135

    Article  CAS  PubMed  Google Scholar 

  • Pichora-Fuller MK, Schneider BA (1998) Masking-level differences in older adults: the effect of the level of the masking noise. Percept Psychophys 60:1197–1205

    Article  CAS  PubMed  Google Scholar 

  • Rouiller E, De Ribaupierre Y, De Ribaupierre F (1979) Phase-locked responses to low frequency tones in the medial geniculate body. Hear Res 1:213–226

    Article  Google Scholar 

  • Sasaki T, Kawase T, Nakasato N, Kanno A, Ogura M, Tominaga T, Kobayashi T (2005) Neuromagnetic evaluation of binaural unmasking. NeuroImage 25:684–689. doi:10.1016/j.neuroimage.2004.11.030

    Article  PubMed  Google Scholar 

  • Smith JC, Marsh JT, Brown WS (1975) Far-field recorded frequency following responses: evidence for the locus of brainstem sources. Electroencephalogr Clin Neurophysiol 39:465–472

    Article  CAS  PubMed  Google Scholar 

  • Steinschneider M, Arezzo J, Vaughan JHG (1980) Phase-locked cortical responses to a human speech sound and low-frequency tones in the monkey. Brain Res 198:75–84

    Article  CAS  PubMed  Google Scholar 

  • Sullivan WE, Konishi M (1986) Neural map of interaural phase difference in the owl’s brainstem. Proc Natl Acad Sci U S A 83:8400–8404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swaminathan J, Krishnan A, Gandour JT, Xu Y (2008) Applications of static and dynamic iterated rippled noise to evaluate pitch encoding in the human auditory brainstem. IEEE Trans Biomed Eng 55:281–287

    Article  PubMed  Google Scholar 

  • Tanis DC, Teas DC (1974) Evoked potential correlates of interaural phase reversals. Audiology 13:357–365

    Article  CAS  PubMed  Google Scholar 

  • van de Par S, Kohlrausch A (1999) Dependence of binaural masking level differences on center frequency, masker bandwidth, and interaural parameters. J Acoust Soc Am 106:1940–1947

    Article  PubMed  Google Scholar 

  • van der Heijden M, Lorteije JA, Plauska A, Roberts MT, Golding NL, Borst JG (2013) Directional hearing by linear summation of binaural inputs at the medial superior olive. Neuron 78:936–948. doi:10.1016/j.neuron.2013.04.028

    Article  PubMed  PubMed Central  Google Scholar 

  • Webster FA (1951) The influence of interaural phase on masked thresholds I. The role of interaural time-deviation. J Acoust Soc Am 23:452–462

    Article  Google Scholar 

  • Wilson JR, Krishnan A (2005) Human frequency-following responses to binaural masking level difference stimuli. J Am Acad Audiol 16:184–195

    Article  PubMed  Google Scholar 

  • Winer J, Miller LM, Lee CC, Schreiner CE (2005) Auditory thalamocortical transformation: structure and function. Trends in Neuroscience 28:255–263

    Article  CAS  Google Scholar 

  • Won JH et al (2011) Relationship between behavioral and physiological spectral-ripple discrimination. Journal of the Association for Research in Otolaryngology: JARO 12:375–393. doi:10.1007/s10162-011-0257-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Wong WY, Stapells DR (2004) Brain stem and cortical mechanisms underlying the binaural masking level difference in humans: an auditory steady-state response study. Ear Hear 25:57–67

    Article  PubMed  Google Scholar 

  • Worden FG, Marsh JT (1968) Frequency-following (microphonic-like) neural responses evoked by sound. Electroencephalogr Clin Neurophysiol 25:42–52

    Article  CAS  PubMed  Google Scholar 

  • Zurek PM, Durlach NI (1987) Masker-bandwidth dependence in homophasic and antiphasic tone detection. J Acoust Soc Am 81:459–464

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funding for this experiment was provided, in part, by a research grant from James Madison University’s College of Health and Behavioral Studies (CGC). Non-financial support was provided by NIH-NIDCD #U24 DC012079, which provided no direct or indirect funds to support this research. The authors also wish to thank several anonymous reviewers for their constructive comments.

Author’s Contributions

CC and SH designed the research. CC, SH, and MS performed research. CC and SH analyzed data. CC and SH wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher G. Clinard.

Ethics declarations

All methods and procedures used in this study were approved and in accordance with the International Review Board at James Madison University.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clinard, C.G., Hodgson, S.L. & Scherer, M.E. Neural Correlates of the Binaural Masking Level Difference in Human Frequency-Following Responses. JARO 18, 355–369 (2017). https://doi.org/10.1007/s10162-016-0603-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-016-0603-7

Keywords

Navigation