Skip to main content

Advertisement

Log in

Temporal Considerations for Stimulating Spiral Ganglion Neurons with Cochlear Implants

  • Review Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

A wealth of knowledge about different types of neural responses to electrical stimulation has been developed over the past 100 years. However, the exact forms of neural response properties can vary across different types of neurons. In this review, we survey four stimulus-response phenomena that in recent years are thought to be relevant for cochlear implant stimulation of spiral ganglion neurons (SGNs): refractoriness, facilitation, accommodation, and spike rate adaptation. Of these four, refractoriness is the most widely known, and many perceptual and physiological studies interpret their data in terms of refractoriness without incorporating facilitation, accommodation, or spike rate adaptation. In reality, several or all of these behaviors are likely involved in shaping neural responses, particularly at higher stimulation rates. A better understanding of the individual and combined effects of these phenomena could assist in developing improved cochlear implant stimulation strategies. We review the published physiological data for electrical stimulation of SGNs that explores these four different phenomena, as well as some of the recent studies that might reveal the biophysical bases of these stimulus-response phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5

Similar content being viewed by others

References

  • Adamson CL, Reid MA, Mo ZL, Bowne-English J, Davis RL (2002) Firing features and potassium channel content of murine spiral ganglion neurons vary with cochlear location. J Comp Neurol 447(4):331–350

    Article  CAS  PubMed  Google Scholar 

  • Arora K, Dawson P, Dowell R, Vandali A (2009) Electrical stimulation rate effects on speech perception in cochlear implants. Int J Audiol 48(8):561–567

    Article  PubMed  Google Scholar 

  • Avissar M, Wittig JH, Saunders JC, Parsons TD (2013) Refractoriness enhances temporal coding by auditory nerve fibers. J Neurosci 33(18):7681–7690

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Balkany T, Hodges A, Menapace C, Hazard L, Driscoll C, Gantz B, Kelsall D, Luxford W, McMenomy S, Neely JG, Peters B, Pillsbury H, Roberson J, Schramm D, Telian S, Waltzman S, Westerberg B, Payne S (2007) Nucleus Freedom North American clinical trial. Otolaryngol Head Neck Surg 136(5):757–762

    Article  PubMed  Google Scholar 

  • Baylor DA, Nicholls JG (1969) Changes in extracellular potassium concentration produced by neuronal activity in the central nervous system of the leech. J Physiol 203(3):555–569

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Benarroch EE (2013) HCN channels: function and clinical implications. Neurology 80(3):304–310

    Article  PubMed  Google Scholar 

  • Benda J, Herz AVM (2003) A universal model for spike-frequency adaptation. Neural Comput 15(11):2523–2564

    Article  PubMed  Google Scholar 

  • Bi Q (1989) A closed-form solution for removing the dead time effects from the poststimulus time histograms. J Acoust Soc Am 85(6):2504

    Article  CAS  PubMed  Google Scholar 

  • Biel M, Wahl-Schott C, Michalakis S, Zong X (2009) Hyperpolarization-activated cation channels: from genes to function. Physiol Rev 89(3):847–885

    Article  CAS  PubMed  Google Scholar 

  • Bortone DS, Mitchell K, Manis PB (2006) Developmental time course of potassium channel expression in the rat cochlear nucleus. Hear Res 211(1-2):114–125

    Article  CAS  PubMed  Google Scholar 

  • Botros A, Psarros C (2010) Neural response telemetry reconsidered: II. The influence of neural population on the ECAP recovery function and refractoriness. Ear Hear 31(3):380–391

    Article  PubMed  Google Scholar 

  • Brette R, Gerstner W (2005) Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J Neurophysiol 94(5):3637–3642

    Article  PubMed  Google Scholar 

  • Brew HM, Hallows JL, Tempel BL (2003) Hyperexcitability and reduced low threshold potassium currents in auditory neurons of mice lacking the channel subunit Kv1.1. J Physiol 548(1):1–20

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brown DA, Adams PR (1980) Muscarinic suppression of a novel voltage-sensitive K+ current in a vertebrate neuron. Nature 283(5748):673–676

    Article  CAS  PubMed  Google Scholar 

  • Bruce IC, White MW, Irlicht LS, O’Leary SJ, Dynes S, Javel E, Clark GM (1999) A stochastic model of the electrically stimulated auditory nerve: single-pulse response. IEEE Trans Biomed Eng 46(6):617–629

    Article  CAS  PubMed  Google Scholar 

  • Brunel N, van Rossum M (2007) Quantitative investigations of electrical nerve excitation treated as polarization. Biol Cybern 97(5-6):341–349

    Article  Google Scholar 

  • Burkitt AN (2006) A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input. Biol Cybern 95(1):1–19

    Article  CAS  PubMed  Google Scholar 

  • Butikofer R, Lawrence PD (1979) Electrocutaneous nerve stimulation-II: stimulus waveform selection. IEEE Trans Biomed Eng BME-26(2):69–75

    Article  Google Scholar 

  • Campbell LJ, Sly DJ, O’Leary SJ (2012) Prediction and control of neural responses to pulsatile electrical stimulation. J Neural Eng 9(2):026,023

    Article  Google Scholar 

  • Cartee LA (2000) Evaluation of a model of the cochlear neural membrane. II: Comparison of model and physiological measures of membrane properties measured in response to intrameatal electrical stimulation. Hear Res 146(1-2):153–166

    Article  CAS  PubMed  Google Scholar 

  • Cartee LA (2006) Spiral ganglion cell site of excitation II: numerical model analysis. Hear Res 215(1-2):22–30

    Article  PubMed  Google Scholar 

  • Cartee LA, van den Honert C, Finley CC, Miller RL (2000) Evaluation of a model of the cochlear neural membrane. I. Physiological measurement of membrane characteristics in response to intrameatal electrical stimulation. Hear Res 146(1-2):143–152

    Article  CAS  PubMed  Google Scholar 

  • Cartee LA, Miller CA, van den Honert C (2006) Spiral ganglion cell site of excitation I: comparison of scala tympani and intrameatal electrode responses. Hear Res 215(1-2):10–21

    Article  PubMed  Google Scholar 

  • Chen C (1997) Hyperpolarization-activated current (I h) in primary auditory neurons. Hear Res 110(1-2):179–190

    Article  CAS  PubMed  Google Scholar 

  • Chow CC, White JA (1996) Spontaneous action potentials due to channel fluctuations. Biophys J 71(6):3013–3021

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cohen LT (2009) Practical model description of peripheral neural excitation in cochlear implant recipients: 5. Refractory recovery and facilitation. Hear Res 248(1-2):1–14

    Article  PubMed  Google Scholar 

  • Dynes SBC (1996) Discharge characteristics of auditory nerve fibers for pulsatile electrical stimuli. PhD thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts

  • Fleidervish IA, Friedman A, Gutnick MJ (1996) Slow inactivation of Na+ current and slow cumulative spike adaptation in mouse and guinea-pig neocortical neurones in slices. J Physiol Lond 493(1):83–97

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Frankenhaeuser B, Vallbo AB (1965) Accommodation in myelinated nerve fibres of Xenopus laevis as computed on the basis of voltage clamp data. Acta Physiol Scand 63(1-2):1–20

    Article  CAS  PubMed  Google Scholar 

  • Friesen LM, Shannon RV, Cruz RJ (2005) Effects of stimulation rate on speech recognition with cochlear implants. Audiol Neurootol 10(3):169–184

    Article  PubMed  Google Scholar 

  • Glowatzki E, Fuchs PA (2002) Transmitter release at the hair cell ribbon synapse. Nat Neurosci 5(2):147–154

    Article  CAS  PubMed  Google Scholar 

  • Goldwyn JH, Rubinstein JT, Shea-Brown E (2012) A point process framework for modeling electrical stimulation of the auditory nerve. J Neurophysiol 108(5):1430–1452

    Article  PubMed Central  PubMed  Google Scholar 

  • Gulledge AT, Dasari S, Onoue K, Stephens EK, Hasse JM, Avesar D (2013) A sodium-pump-mediated afterhyperpolarization in pyramidal neurons. J Neurosci 33(32):13,025–13,041

    Article  CAS  Google Scholar 

  • Hardie NA, Shepherd RK (1999) Sensorineural hearing loss during development: morphological and physiological response of the cochlea and auditory brainstem. Hear Res 128(1-2):147–165

    Article  CAS  PubMed  Google Scholar 

  • Hartmann R, Topp G, Klinke R (1984) Discharge patterns of cat primary auditory fibers with electrical-stimulation of the cochlea. Hear Res 13(1):47–62

    Article  CAS  PubMed  Google Scholar 

  • Heffer LF (2010) High rate electrical stimulation of the auditory nerve: examining the effects of sensorineural hearing loss. PhD thesis, The University of Melbourne, Melbourne, Victoria

  • Heffer LF, Sly DJ, Fallon JB, White MW, Shepherd RK, O’Leary SJ (2010) Examining the auditory nerve fiber response to high rate cochlear implant stimulation: chronic sensorineural hearing loss and facilitation. J Neurophysiol 104(6):3124–3135

    Article  PubMed Central  PubMed  Google Scholar 

  • Heil P, Neubauer H, Irvine DRF, Brown M (2007) Spontaneous activity of auditory-nerve fibers: insights into stochastic processes at ribbon synapses. J Neurosci 27(31):8457–8474

    Article  CAS  PubMed  Google Scholar 

  • Hill AV (1936) Excitation and accommodation in nerve. Proc R Soc B 119(814):305–355

    Article  Google Scholar 

  • Hodgkin AL (1938) The subthreshold potentials in a crustacean nerve fibre. Proc R Soc B 126(842):87–121

    Article  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500–544

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Holden LK, Skinner MW, Holden TA, Demorest ME (2002) Effects of stimulation rate with the Nucleus 24 ACE speech coding strategy. Ear Hear 23(5):463–476

    Article  PubMed  Google Scholar 

  • van den Honert C, Kelsall DC (2007) Focused intracochlear electric stimulation with phased array channels. J Acoust Soc Am 121(6):3703–3716

    Article  PubMed  Google Scholar 

  • Hossain WA, Antic SD, Yang Y, Rasband MN, Morest DK (2005) Where is the spike generator of the cochlear nerve? Voltage-gated sodium channels in the mouse cochlea. J Neurosci 25(29):6857–6868

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Howells J, Trevillion L, Bostock H, Burke D (2012) The voltage dependence of I(I h) in human myelinated axons. J Physiol Lond 590(Pt 7):1625–1640

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Imennov NS, Rubinstein JT (2009) Stochastic population model for electrical stimulation of the auditory nerve. IEEE Trans Biomed Eng 56(10):2493–2501

    Article  PubMed  Google Scholar 

  • Izhikevich EM (2003) Simple model of spiking neurons. IEEE Trans Neural Netw 14(6):1569–1572

    Article  CAS  PubMed  Google Scholar 

  • Javel E, Viemeister NF (2000) Stochastic properties of cat auditory nerve responses to electric and acoustic stimuli and application to intensity discrimination. J Acoust Soc Am 107(2):908

    Article  CAS  PubMed  Google Scholar 

  • June L, Young ED (1993) Discharge-rate dependence of refractory behavior of cat auditory-nerve fibers. Hear Res 69(1-2):151–162

    Article  Google Scholar 

  • Kandel ER, Schwartz J, Jessell T (2000) Principles of neural science, 4th edn. McGraw-Hill Medical

  • Katz B (1936) Multiple response to constant current in frog’s medullated nerve. J Physiol 88(2):239–255

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kiefer J, von Ilberg C, Rupprecht V, Hubner-Egner J, Knecht R (2000) Optimized speech understanding with the continuous interleaved sampling speech coding strategy in patients with cochlear implants: effect of variations in stimulation rate and number of channels. Ann Otol Rhinol Laryngol 109(11):1009–1020

    Article  CAS  PubMed  Google Scholar 

  • Knight BW (1972) Dynamics of encoding in a population of neurons. J Gen Physiol 59(6):734–766

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lai HC, Jan LY (2006) The distribution and targeting of neuronal voltage-gated ion channels. Nat Rev Neurosci 7(7):548–562

    Article  CAS  PubMed  Google Scholar 

  • Lapicque L (1907) Recherches quantitatives sur l’excitation électrique des nerfs traitée comme une polarisation. J Physiol Pathol Gen 9:620–635

    Google Scholar 

  • Litvak LM, Delgutte B, Eddington DK (2001) Auditory nerve fiber responses to electric stimulation: modulated and unmodulated pulse trains. J Acoust Soc Am 110(1):368–379

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Litvak LM, Smith ZM, Delgutte B, Eddington DK (2003) Desynchronization of electrically evoked auditory-nerve activity by high-frequency pulse trains of long duration. J Acoust Soc Am 114(4 Pt 1):2066–2078

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu Q, Lee E, Davis RL (2014a) Heterogeneous intrinsic excitability of murine spiral ganglion neurons is determined by Kv1 and HCN channels. Neuroscience 257:96–110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu Q, Manis PB, Davis RL (2014b) I h and HCN channels in murine spiral ganglion neurons: tonotopic variation, local heterogeneity, and kinetic model. J Assoc Res Otolaryngol 15(4):585–599

    Article  PubMed Central  PubMed  Google Scholar 

  • Loizou PC (1998) Mimicking the human ear. IEEE Signal Process Mag 15(5):101–130

    Article  Google Scholar 

  • Loizou PC, Poroy O, Dorman M (2000) The effect of parametric variations of cochlear implant processors on speech understanding. J Acoust Soc Am 108(2):790–802

    Article  CAS  PubMed  Google Scholar 

  • Lucas K (1910) Quantitative researches on the summation of inadequate stimuli in muscle and nerve, with observations on the time-factor in electric excitation. J Physiol 39(6):461–475

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Macherey O, Carlyon RP, van Wieringen A, Deeks JM, Wouters J (2008) Higher sensitivity of human auditory nerve fibers to positive electrical currents. J Assoc Res Otolaryngol 9(2):241–251

    Article  PubMed Central  PubMed  Google Scholar 

  • Madison DV, Nicoll RA (1984) Control of the repetitive discharge of rat CA 1 pyramidal neurones in vitro. J Physiol 354:319–331

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mark KE, Miller MI (1992) Bayesian model selection and minimum description length estimation of auditory-nerve discharge rates. J Acoust Soc Am 91(2):989–1002

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka AJ, Rubinstein JT, Abbas PJ, Miller CA (2001) The effects of interpulse interval on stochastic properties of electrical stimulation: models and measurements. IEEE Trans Biomed Eng 48(4):416–424

    Article  CAS  PubMed  Google Scholar 

  • Merzenich MM, White MW (1977) Cochlear implants: the interface problem. In: Hambrecht FT, Reswick JB (eds) Functional electrical stimulation: applications in neural prostheses. Marcel Dekker, Inc., New York, pp 321–340

    Google Scholar 

  • Miller C, Abbas PJ, Nourski KV, Hu N, Robinson BK (2003) Electrode configuration influences action potential initiation site and ensemble stochastic response properties. Hear Res 175(1-2):200–214

    Article  PubMed  Google Scholar 

  • Miller CA, Abbas PJ, Robinson B (2001) Response properties of the refractory auditory nerve fiber. J Assoc Res Otolaryngol 2(3):216–232

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miller CA, Woo J, Abbas PJ, Hu N, Robinson BK (2011) Neural masking by sub-threshold electric stimuli: animal and computer model results. J Assoc Res Otolaryngol 12(2):219–232

    Article  PubMed Central  PubMed  Google Scholar 

  • Miller MI (1985) Algorithms for removing recovery-related distortion from auditory-nerve discharge patterns. J Acoust Soc Am 77(4):1452–1464

    Article  CAS  PubMed  Google Scholar 

  • Miller MI, Mark KE (1992) A statistical study of cochlear nerve discharge patterns in response to complex speech stimuli. J Acoust Soc Am 92(1):202–209

    Article  CAS  PubMed  Google Scholar 

  • Mino H, Rubinstein JT, Miller CA, Abbas PJ (2004) Effects of electrode-to-fiber distance on temporal neural response with electrical stimulation. IEEE Trans Biomed Eng 51(1):13–20

    Article  PubMed  Google Scholar 

  • Mo ZL, Adamson CL, Davis RL (2002) Dendrotoxin-sensitive K+ currents contribute to accommodation in murine spiral ganglion neurons. J Physiol 542(3):763–778

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Negm MH, Bruce IC (2008) Effects of and on the response of the auditory nerve to electrical stimulation in a stochastic Hodgkin-Huxley model. Proc 30th Annu Int Conf IEEE Eng Med Biol Soc pp 5539–5542

  • Negm MH, Bruce IC (2014) The effects of HCN and KLT ion channels on adaptation and refractoriness in a stochastic auditory nerve model. IEEE Trans Biomed Eng 61(11):2749–2759

    Article  PubMed  Google Scholar 

  • Nernst W (1908) Zur theorie des elektrischen reizes. Pfluger Arch 122(7-9):275–314

    Article  Google Scholar 

  • Nie K, Barco A, Zeng FG (2006) Spectral and temporal cues in cochlear implant speech perception. Ear Hear 27(2):208–217

    Article  PubMed  Google Scholar 

  • Phan TT, White MW, Finley CC, Cartee LA (1994) Neural membrane model responses to sinusoidal electrical stimuli. In: Hochmair-Desoyer IJ, Hochmair ES (eds) Advances in cochlear implants. Manz, Vienna, Austria, pp 342–347

    Google Scholar 

  • Plant K, Holden L, Skinner M, Arcaroli J, Whitford L, Law MA, Nel E (2007) Clinical evaluation of higher stimulation rates in the nucleus research platform 8 system. Ear Hear 28(3):381–393

    Article  PubMed  Google Scholar 

  • Plant KL, Whitford LA, Psarros CE, Vandali AE (2002) Parameter selection and programming recommendations for the ACE and CIS speech-processing strategies in the Nucleus 24 cochlear implant system. Cochlear Implants Int 3(2):104–125

    Article  PubMed  Google Scholar 

  • Plourde E, Delgutte B, Brown EN (2011) A point process model for auditory neurons considering both their intrinsic dynamics and the spectrotemporal properties of an extrinsic signal. IEEE Trans Biomed Eng 58(6):1507–1510

    Article  PubMed Central  PubMed  Google Scholar 

  • Prijs VF, Keijzer J, Versnel H, Schoonhoven R (1993) Recovery characteristics of auditory nerve fibres in the normal and noise-damaged guinea pig cochlea. Hear Res 71(1-2):190–201

    Article  CAS  PubMed  Google Scholar 

  • Rasband MN, Shrager P (2000) Ion channel sequestration in central nervous system axons. J Physiol 525(Pt 1):63–73

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rattay F (2000) Basics of hearing theory and noise in cochlear implants. Chaos Soliton Fract 11(12):1875–1884

    Article  Google Scholar 

  • Rattay F, Danner SM (2014) Peak I of the human auditory brainstem response results from the somatic regions of type I spiral ganglion cells: evidence from computer modeling. Hear Res 315:67–79

    Article  PubMed Central  PubMed  Google Scholar 

  • Rattay F, Lutter P, Felix H (2001) A model of the electrically excited human cochlear neuron. Hear Res 153(1-2):43–63

    Article  CAS  PubMed  Google Scholar 

  • Rattay F, Potrusil T, Wenger C, Wise AK, Glueckert R, Schrott-Fischer A (2013) Impact of morphometry, myelinization and synaptic current strength on spike conduction in human and cat spiral ganglion neurons. PLoS One 8(11):e79,256

    Article  CAS  Google Scholar 

  • Reid MA, Flores-Otero J, Davis RL (2004) Firing patterns of type II spiral ganglion neurons in vitro. J Neurosci 24(3):733–742

    Article  CAS  PubMed  Google Scholar 

  • Robinson RB, Siegelbaum SA (2003) Hyperpolarization-activated cation currents: from molecules to physiological function. Annu Rev Physiol 65:453–480

    Article  CAS  PubMed  Google Scholar 

  • Rothman JS, Manis PB (2003) Kinetic analyses of three distinct potassium conductances in ventral cochlear nucleus neurons. J Neurophysiol 89(6):3083–3096

    Article  CAS  PubMed  Google Scholar 

  • Rubinstein JT (1995) Threshold fluctuations in an N sodium channel model of the node of Ranvier. Biophys J 68(3):779–785

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Safieddine S, El-Amraoui A, Petit C (2012) The auditory hair cell ribbon synapse: from assembly to function. Annu Rev Neurosci 35(1):509–528

    Article  CAS  PubMed  Google Scholar 

  • Sigworth FJ (1981) Covariance of nonstationary sodium current fluctuations at the node of Ranvier. Biophys J 34(1):111–133

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sly DJ, Heffer LF, White MW, Shepherd RK, Birch MGJ, Minter RL, Nelson NE, Wise AK, O’Leary SJ (2007) Deafness alters auditory nerve fibre responses to cochlear implant stimulation. Eur J Neurosci 26(2):510–522

    Article  PubMed Central  PubMed  Google Scholar 

  • Smit JE, Hanekom T, Hanekom JJ (2008) Predicting action potential characteristics of human auditory nerve fibres through modification of the Hodgkin-Huxley equations. S Afr J Sc 104(7-8):284–292

    Google Scholar 

  • Smit JE, Hanekom T, van Wieringen A, Wouters J, Hanekom JJ (2010) Threshold predictions of different pulse shapes using a human auditory nerve fibre model containing persistent sodium and slow potassium currents. Hear Res 269(1-2):12–22

    Article  PubMed  Google Scholar 

  • Solandt DY (1936) The measurement of “accommodation” in nerve. Proc R Soc B 119(814):355–379

    Article  CAS  Google Scholar 

  • Tait J (1910) The relation between refractory phase and electrical change. Exp Physiol 3(3):221–232

    Article  Google Scholar 

  • Trevino A, Coleman TP, Allen J (2010) A dynamical point process model of auditory nerve spiking in response to complex sounds. J Comput Neurosci 29(1-2):193–201

    Article  PubMed Central  PubMed  Google Scholar 

  • Vandali AE, Whitford LA, Plant KL, Clarke GM (2000) Speech perception as a function of electrical stimulation rate: using the nucleus 24 cochlear implant system. Ear Hear 21(6):608–624

    Article  CAS  PubMed  Google Scholar 

  • Verschuur CA (2005) Effect of stimulation rate on speech perception in adult users of the Med-El CIS speech processing strategy. Int J Audiol 44(1):58–63

    Article  CAS  PubMed  Google Scholar 

  • Verveen AA (1961) Fluctuation in excitability. PhD thesis, Netherlands Central Institute for Brain Research, Amsterdam, Netherlands

  • Verveen AA (1962) Axon diameter and fluctuation in excitability. Acta Morphol Neerl Scand 5:79–85

    CAS  PubMed  Google Scholar 

  • Verveen AA, Derksen HE (1968) Fluctuation phenomena in nerve membrane. Proc IEEE 56(6):906–916

    Article  Google Scholar 

  • Weber BP, Lai WK, Dillier N, von Wallenberg EL, Killian MJP, Pesch J, Battmer RD, Lenarz T (2007) Performance and preference for ACE stimulation rates obtained with nucleus RP 8 and freedom system. Ear Hear 28(2):46S–48S

    Article  CAS  PubMed  Google Scholar 

  • Webster M, Webster DB (1981) Spiral ganglion neuron loss following organ of Corti loss: a quantitative study. Brain Res 212(1):17–30

    Article  CAS  PubMed  Google Scholar 

  • White MW (1984) Psychophysical and neuropsychological considerations in the design of a cochlear prosthesis. Audiol Ital 1:77–117

    Google Scholar 

  • Wilson BS, Finley CC, Farmer JC, Lawson DT, Weber BA, Wolford RD, Kenan PD, White MW, Merzenich MM, Schindler RA (1988) Comparative studies of speech processing strategies for cochlear implants. Laryngoscope 98(10):1069–1077

    CAS  PubMed  Google Scholar 

  • Wilson BS, Finley CC, Lawson DT, Wolford RD, Zerbi M (1993) Design and evaluation of a continuous interleaved sampling (CIS) processing strategy for multichannel cochlear implants. J Rehabil Res Dev 30(1):110–116

    CAS  PubMed  Google Scholar 

  • Woo J, Miller CA, Abbas PJ (2009a) Biophysical model of an auditory nerve fiber with a novel adaptation component. IEEE Trans Biomed Eng 56(9):2177–2180

    Article  PubMed  Google Scholar 

  • Woo J, Miller CA, Abbas PJ (2009b) Simulation of the electrically stimulated cochlear neuron: modeling adaptation to trains of electric pulses. IEEE Trans Biomed Eng 56(5):1348–1359

    Article  PubMed  Google Scholar 

  • Woo J, Miller CA, Abbas PJ (2009c) The dependence of auditory nerve rate adaptation on electric stimulus parameters, electrode position, and fiber diameter: a computer model study. J Assoc Res Otolaryngol 11(2):283–296

    Article  PubMed Central  PubMed  Google Scholar 

  • Yi E, Roux I, Glowatzki E (2010) Dendritic HCN channels shape excitatory postsynaptic potentials at the inner hair cell afferent synapse in the mammalian cochlea. J Neurophysiol 103(5):2532–2543

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang F, Miller CA, Robinson BK, Abbas PJ, Hu N (2007) Changes across time in spike rate and spike amplitude of auditory nerve fibers stimulated by electric pulse trains. J Assoc Res Otolaryngol 8(3):356–372

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Drs. Paul Abbas, Lianne Cartee, and Elisabeth Glowatzki for allowing the use of their figures in this paper. We would also like to thank members of the Bruce laboratory for the feedback on earlier versions of the manuscript. Finally, we would like to thank Associate Editor Dr. George Spirou and the two anonymous reviewers for the helpful comments. This work was supported by NSERC Discovery Grant 261736 (ICB).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason Boulet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boulet, J., White, M. & Bruce, I.C. Temporal Considerations for Stimulating Spiral Ganglion Neurons with Cochlear Implants. JARO 17, 1–17 (2016). https://doi.org/10.1007/s10162-015-0545-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-015-0545-5

Keywords

Navigation