Skip to main content
Log in

Exploring the Role of Feedback-Based Auditory Reflexes in Forward Masking by Schroeder-Phase Complexes

  • Research Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

Several studies have postulated that psychoacoustic measures of auditory perception are influenced by efferent-induced changes in cochlear responses, but these postulations have generally remained untested. This study measured the effect of stimulus phase curvature and temporal envelope modulation on the medial olivocochlear reflex (MOCR) and on the middle-ear muscle reflex (MEMR). The role of the MOCR was tested by measuring changes in the ear-canal pressure at 6 kHz in the presence and absence of a band-limited harmonic complex tone with various phase curvatures, centered either at (on-frequency) or well below (off-frequency) the 6-kHz probe frequency. The influence of possible MEMR effects was examined by measuring phase-gradient functions for the elicitor effects and by measuring changes in the ear-canal pressure with a continuous suppressor of the 6-kHz probe. Both on- and off-frequency complex tone elicitors produced significant changes in ear canal sound pressure. However, the pattern of results was not consistent with the earlier hypotheses postulating that efferent effects produce the psychoacoustic dependence of forward-masked thresholds on masker phase curvature. The results also reveal unexpectedly long time constants associated with some efferent effects, the source of which remains unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  • Abbas PJ (1979) Effects of stimulus frequency on adaptation in auditory-nerve fibers. J Acoust Soc Am 65:162–165

    Article  CAS  PubMed  Google Scholar 

  • Aguilar E, Eustaquio-Martin A, Lopez-Poveda EA (2013) Contralateral efferent reflex effects on threshold and suprathreshold psychoacoustical tuning curves at low and high frequencies. J Assoc Res Otolaryngol 14:341–357

    Article  PubMed Central  PubMed  Google Scholar 

  • Backus BC, Guinan JJ Jr (2006) Time-course of the human medial olivocochlear reflex. J Acoust Soc Am 119:2889–2904

    Article  PubMed  Google Scholar 

  • Brass D, Kemp DT (1993) Suppression of stimulus frequency otoacoustic emissions. J Acoust Soc Am 93:920–939

    Article  CAS  PubMed  Google Scholar 

  • Carlyon RP, Datta AJ (1997) Excitation produced by Schroeder-phase complexes: evidence for fast-acting compression in the auditory system. J Acoust Soc Am 101:3636–3647

    Article  CAS  PubMed  Google Scholar 

  • Charaziak KK, Souza P, Siegel JH (2013) Stimulus-frequency otoacoustic emission suppression tuning in humans: comparison to behavioral tuning. J Assoc Res Otolaryngol 14:843–862

    Article  PubMed Central  PubMed  Google Scholar 

  • Cheatham MA, Dallos P (2001) Inner hair cell response patterns: implications for low-frequency hearing. J Acoust Soc Am 110:2034–2044

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Zha D, Fridberger A, Zheng J, Choudhury N, Jacques SL, Wang RK, Shi X, Nuttall AL (2011) A differentially amplified motion in the ear for near-threshold sound detection. Nat Neurosci 14:770–774

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Church GT, Cudahy EA (1984) The time course of the acoustic reflex. Ear Hear 5:235–242

    Article  CAS  PubMed  Google Scholar 

  • Collet L, Kemp DT, Veuillet E, Duclaux R, Moulin A, Morgon A (1990) Effect of contralateral auditory stimuli on active cochlear micro-mechanical properties in human subjects. Hear Res 43:251–261

    Article  CAS  PubMed  Google Scholar 

  • Collet L, Veuillet E, Bene J, Morgon A (1992) Effects of contralateral white noise on click-evoked emissions in normal and sensorineural ears: Towards an exploration of the medial olivocochlear system. Audiology 31:1–7

    Article  CAS  PubMed  Google Scholar 

  • Feeney MP, Keefe DH (2001) Estimating the acoustic reflex threshold from wideband measures of reflectance, admittance, and power. Ear Hear 22:316–332

    Article  CAS  PubMed  Google Scholar 

  • Giard MH, Collet L, Bouchet P, Pernier J (1994) Auditory selective attention in the human cochlea. Brain Res 633:353–356

    Article  CAS  PubMed  Google Scholar 

  • Gifford ML, Guinan JJ Jr (1987) Effects of electrical stimulation of medial olivocochlear neurons on ipsilateral and contralateral cochlear responses. Hear Res 29:179–194

    Article  CAS  PubMed  Google Scholar 

  • Goodman SS, Keefe DH (2006) Simultaneous measurement of noise-activated middle-ear muscle reflex and stimulus frequency otoacoustic emissions. J Assoc Res Otolaryngol 7:125–139

    Article  PubMed Central  PubMed  Google Scholar 

  • Guinan JJ Jr (1990) Changes in stimulus frequency otoacoustic emissions produced by two-tone suppression and efferent stimulation in cats. In: Dallos P, Geisler CD, Matthews JW, Ruggero MA, Steele CR (eds) Mechanics and biophysics of hearing. Springer, Madison, pp 170–177

    Chapter  Google Scholar 

  • Guinan JJ Jr (2006) Olivocochlear efferents: anatomy, physiology, function, and the measurement of efferent effects in humans. Ear Hear 27:589–607

    Article  PubMed  Google Scholar 

  • Guinan JJ Jr (2012) How are inner hair cells stimulated? Evidence for multiple mechanical drives. Hear Res 292:35–50

    Article  PubMed Central  PubMed  Google Scholar 

  • Guinan JJ Jr, Backus BC, Lilaonitkul W, Aharonson V (2003) Medial olivocochlear efferent reflex in humans: otoacoustic emission (OAE) measurement issues and the advantages of stimulus frequency OAEs. J Assoc Res Otolaryngol 4:521–540

    Article  PubMed Central  PubMed  Google Scholar 

  • Hung IJ, Dallos P (1972) Study of the acoustic reflex in human beings. I. Dynamic characteristics. J Acoust Soc Am 52:1168–1180

    Article  CAS  PubMed  Google Scholar 

  • Jennings SG, Strickland EA (2012) Evaluating the effects of olivocochlear feedback on psychophysical measures of frequency selectivity. J Acoust Soc Am 132:2483–2496

    Article  PubMed Central  PubMed  Google Scholar 

  • Jennings SG, Strickland EA, Heinz MG (2009) Precursor effects on behavioral estimates of frequency selectivity and gain in forward masking. J Acoust Soc Am 125:2172–2181

    Article  PubMed Central  PubMed  Google Scholar 

  • Jepsen O (1963) Middle ear muscle reflexes in man. In: Jerger J (ed) Modern developments in audiology. Academic, New York, pp 193–223

    Google Scholar 

  • Keefe DH, Ling R (1998) Double-evoked otoacoustic emissions. II. Intermittent noise rejection, calibration and ear-canal measurements. J Acoust Soc Am 103:3499–3508

    Article  CAS  PubMed  Google Scholar 

  • Keefe DH, Schairer KS, Ellison JC, Fitzpatrick DF, Jesteadt W (2009) Use of stimulus-frequency otoacoustic emissions to investigate efferent and cochlear contributions to temporal overshoot. J Acoust Soc Am 125:1595–1604

    Article  PubMed Central  PubMed  Google Scholar 

  • Kim DO, Dorn PA, Neely ST, Gorga MP (2001) Adaptation of distortion product otoacoustic emission in humans. J Assoc Res Otolaryngol 2:31–40

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kohlrausch A, Sander A (1995) Phase effects in masking related to dispersion in the inner ear. II. Masking period patterns of short targets. J Acoust Soc Am 97:1817–1829

    Article  CAS  PubMed  Google Scholar 

  • Krull V, Strickland EA (2008) The effect of a precursor on growth of forward masking. J Acoust Soc Am 123:4352–4357

    Article  PubMed Central  PubMed  Google Scholar 

  • Kujawa SG, Liberman MC (1997) Conditioning-related protection from acoustic injury: effects of chronic deefferentation and sham surgery. J Neurophysiol 78:3095–3106

    CAS  PubMed  Google Scholar 

  • Lentz JJ, Leek MR (2001) Psychophysical estimates of cochlear phase response: masking by harmonic complexes. J Assoc Res Otolaryngol 2:408–422

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Levitt H (1971) Transformed up-down methods in psychoacoustics. J Acoust Soc Am 49:467–477

    Article  PubMed  Google Scholar 

  • Liberman MC (1989) Rapid assessment of sound-evoked olivocochlear feedback: suppression of compound action potentials by contralateral sound. Hear Res 38:47–56

    Article  CAS  PubMed  Google Scholar 

  • Liberman MC, Puria S, Guinan JJ Jr (1996) The ipsilaterally evoked olivocochlear reflex causes rapid adaptation of the 2f1-f2 distortion product otoacoustic emission. J Acoust Soc Am 99:3572–3584

    Article  CAS  PubMed  Google Scholar 

  • Liberman MC, Liberman LD, Maison SF (2014) Efferent feedback slows cochlear aging. J Neurosci 34:4599–4607

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lilaonitkul W, Guinan JJ Jr (2009a) Human medial olivocochlear reflex: effects as functions of contralateral, ipsilateral, and bilateral elicitor bandwidths. J Assoc Res Otolaryngol 10:459–470

    Article  PubMed Central  PubMed  Google Scholar 

  • Lilaonitkul W, Guinan JJ Jr (2009b) Reflex control of the human inner ear: a half-octave offset in medial efferent feedback that is consistent with an efferent role in the control of masking. J Neurophysiol 101:1394–1406

    Article  PubMed Central  PubMed  Google Scholar 

  • Lilaonitkul W, Guinan JJ Jr (2012) Frequency tuning of medial-olivocochlear-efferent acoustic reflexes in humans as functions of probe frequency. J Neurophysiol 107:1598–1611

    Article  PubMed Central  PubMed  Google Scholar 

  • Lopez-Poveda EA, Plack CJ, Meddis R (2003) Cochlear nonlinearity between 500 and 8,000 Hz in listeners with normal hearing. J Acoust Soc Am 113:951–960

    Article  PubMed  Google Scholar 

  • Maison S, Micheyl C, Andeol G, Gallego S, Collet L (2000) Activation of medial olivocochlear efferent system in humans: influence of stimulus bandwidth. Hear Res 140:111–125

    Article  CAS  PubMed  Google Scholar 

  • Maison SF, Usubuchi H, Liberman MC (2013) Efferent feedback minimizes cochlear neuropathy from moderate noise exposure. J Neurosci 33:5542–5552

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McFadden D, Champlin CA (1990) Reductions in overshoot during aspirin use. J Acoust Soc Am 87:2634–2642

    Article  CAS  PubMed  Google Scholar 

  • Moleti A, Al-Maamury AM, Bertaccini D, Botti T, Sisto R (2013) Generation place of the long- and short-latency components of transient-evoked otoacoustic emissions in a nonlinear cochlear model. J Acoust Soc Am 133:4098–4108

    Article  PubMed  Google Scholar 

  • Møller AR (1964) Effect of tympanic muscle activity on movement of the eardrum, acoustic impedance and cochlear microphonics. Acta Otolaryngol 58:525–534

    Article  PubMed  Google Scholar 

  • Nelson DA, Schroder AC, Wojtczak M (2001) A new procedure for measuring peripheral compression in normal-hearing and hearing-impaired listeners. J Acoust Soc Am 110:2045–2064

    Article  CAS  PubMed  Google Scholar 

  • Norman M, Thornton AR (1993) Frequency analysis of the contralateral suppression of evoked otoacoustic emissions by narrow-band noise. Br J Audiol 27:281–289

    Article  CAS  PubMed  Google Scholar 

  • Nuttall AL (1974) Tympanic muscle effects on middle-ear transfer characteristic. J Acoust Soc Am 56:1239–1247

    Article  CAS  PubMed  Google Scholar 

  • Oxenham AJ, Dau T (2001a) Towards a measure of auditory-filter phase response. J Acoust Soc Am 110:3169–3178

    Article  CAS  PubMed  Google Scholar 

  • Oxenham AJ, Dau T (2001b) Reconciling frequency selectivity and phase effects in masking. J Acoust Soc Am 110:1525–1538

    Article  CAS  PubMed  Google Scholar 

  • Oxenham AJ, Dau T (2004) Masker phase effects in normal-hearing and hearing-impaired listeners: evidence for peripheral compression at low signal frequencies. J Acoust Soc Am 116:2248–2257

    Article  PubMed  Google Scholar 

  • Oxenham AJ, Moore BC (1994) Modeling the additivity of nonsimultaneous masking. Hear Res 80:105–118

    Article  CAS  PubMed  Google Scholar 

  • Oxenham AJ, Moore BCJ (1995) Additivity of masking in normally hearing and hearing-impaired subjects. J Acoust Soc Am 98:1921–1934

    Article  CAS  PubMed  Google Scholar 

  • Oxenham AJ, Plack CJ (1997) A behavioral measure of basilar-membrane nonlinearity in listeners with normal and impaired hearing. J Acoust Soc Am 101:3666–3675

    Article  CAS  PubMed  Google Scholar 

  • Penner MJ, Glotzbach L, Huang T (1993) Spontaneous otoacoustic emissions: measurement and data. Hear Res 68:229–237

    Article  CAS  PubMed  Google Scholar 

  • Plack CJ, Arifianto D (2010) On- and off-frequency compression estimated using a new version of the additivity of forward masking technique. J Acoust Soc Am 128:771–786

    Article  PubMed  Google Scholar 

  • Plack CJ, Oxenham AJ, Simonson AM, O’Hanlon CG, Drga V, Arifianto D (2008) Estimates of compression at low and high frequencies using masking additivity in normal and impaired ears. J Acoust Soc Am 123:4321–4330

    Article  PubMed Central  PubMed  Google Scholar 

  • Roverud E, Strickland EA (2010) The time course of cochlear gain reduction measured using a more efficient psychophysical technique. J Acoust Soc Am 128:1203–1214

    Article  PubMed Central  PubMed  Google Scholar 

  • Roverud E, Strickland EA (2014) Accounting for nonmonotonic precursor duration effects with gain reduction in the temporal window model. J Acoust Soc Am 135:1321

    Article  PubMed  Google Scholar 

  • Ruggero MA, Temchin AN (2007) Similarity of traveling-wave delays in the hearing organs of humans and other tetrapods. J Assoc Res Otolaryngol 8:153–166

    Article  PubMed Central  PubMed  Google Scholar 

  • Ruggero MA, Rich NC, Recio A, Narayan SS, Robles L (1997) Basilar-membrane responses to tones at the base of the chinchilla cochlea. J Acoust Soc Am 101:2151–2163

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Russell IJ, Nilsen KE (1997) The location of the cochlear amplifier: spatial representation of a single tone on the guinea pig basilar membrane. Proc Nat Acad Sci 94:2660–2664

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schairer KS, Ellison JC, Fitzpatrick D, Keefe DH (2007) Wideband ipsilateral measurements of middle-ear muscle reflex thresholds in children and adults. J Acoust Soc Am 121:3607–3616

    Article  PubMed Central  PubMed  Google Scholar 

  • Scharf B, Magnan J, Collet L, Ulmer E, Chays A (1994) On the role of the olivocochlear bundle in hearing: a case study. Hear Res 75:11–26

    Article  CAS  PubMed  Google Scholar 

  • Scharf B, Magnan J, Chays A (1997) On the role of the olivocochlear bundle in hearing: 16 case studies. Hear Res 103:101–122

    Article  CAS  PubMed  Google Scholar 

  • Shera CA, Guinan JJ (2003) Stimulus-frequency-emission group delay: a test of coherent reflection filtering and a window on cochlear tuning. J Acoust Soc Am 113:2762–2772

    Article  PubMed  Google Scholar 

  • Siegel JH, Badri R (2002) Suppression of stimulus frequency emissions by tones. 25th ARO Midwinter Meeting, Abs# 320

  • Siegel JH, Temchin AN, Ruggero M (2003) Empirical estimates of the spatial origin of stimulus-frequency otoacoustic emissions. 26th ARO Mindwinter Meeting, Abs# 1516

  • Siegel JH, Cerka AJ, Temchin AN, Ruggero M (2004) Similar two-tone suppression patterns in SFOAEs and the cochlear microphonics indicate comparable spatial summation of underlying generators. 27th ARO Midwinter Meeting, Abs# 365

  • Siegel JH, Cerka AJ, Recio-Spinoso A, Temchin AN, van Dijk P, Ruggero MA (2005) Delays of stimulus-frequency otoacoustic emissions and cochlear vibrations contradict the theory of coherent reflection filtering. J Acoust Soc Am 118:2434–2443

    Article  PubMed  Google Scholar 

  • Sisto R, Sanjust F, Moleti A (2013) Input/output functions of different-latency components of transient-evoked and stimulus-frequency otoacoustic emissions. J Acoust Soc Am 133:2240–2253

    Article  PubMed  Google Scholar 

  • Smith RL (1977) Short-term adaptation in single auditory nerve fibers: some poststimulatory effects. J Neurophysiol 40:1098–1112

    CAS  PubMed  Google Scholar 

  • Smith RL (1979) Adaptation, saturation, and physiological masking in single auditory-nerve fibers. J Acoust Soc Am 65:166–178

    Article  CAS  PubMed  Google Scholar 

  • Smith RL, Brachman RL (1982) Adaptation in auditory-nerve fibers: a revised model. Biol Cybern 44:107–120

    Article  CAS  PubMed  Google Scholar 

  • Smith BK, Sieben UK, Kohlrausch A, Schroeder MR (1986) Phase effects in masking related to dispersion in the inner ear. J Acoust Soc Am 80:1631–1637

    Article  CAS  PubMed  Google Scholar 

  • Stankovic KM, Guinan JJ Jr (1999) Medial efferent effects on auditory-nerve responses to tail-frequency tones. I. Rate reduction. J Acoust Soc Am 106:857–869

    Article  CAS  PubMed  Google Scholar 

  • Strickland EA (2004) The temporal effect with notched-noise maskers: analysis in terms of input–output functions. J Acoust Soc Am 115:2234–2245

    Article  PubMed  Google Scholar 

  • Strickland EA (2008) The relationship between precursor level and the temporal effect. J Acoust Soc Am 123:946–954

    Article  PubMed Central  PubMed  Google Scholar 

  • Strickland EA, Krishnan LA (2005) The temporal effect in listeners with mild to moderate cochlear hearing impairment. J Acoust Soc Am 118:3211–3217

    Article  PubMed  Google Scholar 

  • Summers V (2000) Effects of hearing impairment and presentation level on masking period patterns for Schroeder-phase harmonic complexes. J Acoust Soc Am 108:2307–2317

    Article  CAS  PubMed  Google Scholar 

  • Summers V, Leek MR (1998) Masking of tones and speech by Schroeder-phase harmonic complexes in normally hearing and hearing-impaired listeners. Hear Res 118:139–150

    Article  CAS  PubMed  Google Scholar 

  • Veuillet E, Collet L, Duclaux R (1991) Effect of contralateral acoustic stimulation on active cochlear micromechanical properties in human subjects: dependence on stimulus variables. J Neurophysiol 65:724–735

    CAS  PubMed  Google Scholar 

  • von Klitzing R, Kohlrausch A (1994) Effect of masker level on overshoot in running- and frozen-noise maskers. J Acoust Soc Am 95:2192–2201

    Article  Google Scholar 

  • Walsh KP, Wojtczak M (2014) Time-course of recovery from the effects of a notched-noise on the ear-canal pressure at different frequencies. J Acoust Soc Am 135(Pt.2):2386

    Article  Google Scholar 

  • Walsh KP, Pasanen EG, McFadden D (2010) Overshoot measured physiologically and psychophysically in the same human ears. Hear Res 268:22–37

    Article  PubMed Central  PubMed  Google Scholar 

  • Warren EH, Liberman MC (1989) Effects of contralateral sound on auditory-nerve responses. II. Dependence on stimulus variables. Hear Res 37:105–122

    Article  PubMed  Google Scholar 

  • Wojtczak M, Oxenham AJ (2009a) Pitfalls in behavioral estimates of basilar-membrane compression in humans. J Acoust Soc Am 125:270–281

    Article  PubMed Central  PubMed  Google Scholar 

  • Wojtczak M, Oxenham AJ (2009b) On- and off-frequency forward masking by Schroeder-phase complexes. J Assoc Res Otolaryngol 10:595–607

    Article  PubMed Central  PubMed  Google Scholar 

  • Zha D, Chen F, Ramamoorthy S, Fridberger A, Choudhury N, Jacques SL, Wang RK, Nuttall AL (2012) In vivo outer hair cell length changes expose the active process in the cochlea. PLoS One 7:e32757

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank John J. Guinan, Jr. and Christopher Shera for very helpful discussions on the data in this manuscript. We also thank John J. Guinan and an anonymous reviewer for insightful comments on the earlier version of the manuscript. This work was supported by grant R01 DC 010374 from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Wojtczak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wojtczak, M., Beim, J.A. & Oxenham, A.J. Exploring the Role of Feedback-Based Auditory Reflexes in Forward Masking by Schroeder-Phase Complexes. JARO 16, 81–99 (2015). https://doi.org/10.1007/s10162-014-0495-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-014-0495-3

Keywords

Navigation