Skip to main content
Log in

Experimental and Modeling Study of Human Tympanic Membrane Motion in the Presence of Middle Ear Liquid

  • Research Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

Vibration of the tympanic membrane (TM) has been measured at the umbo using laser Doppler vibrometry and analyzed with finite element (FE) models of the human ear. Recently, full-field TM surface motion has been reported using scanning laser Doppler vibrometry, holographic interferometry, and optical coherence tomography. Technologies for imaging human TM motion have the potential to lead to using a dedicated clinical diagnosis tool for identification of middle ear diseases. However, the effect of middle ear fluid (liquid) on TM surface motion is still not clear. In this study, a scanning laser Doppler vibrometer was used to measure the full-field surface motion of the TM from four human temporal bones. TM displacements were measured under normal and disease-mimicking conditions with different middle ear liquid levels over frequencies ranging from 0.2 to 8 kHz. An FE model of the human ear, including the ear canal, middle ear, and spiral cochlea was used to simulate the motion of the TM in normal and disease-mimicking conditions. The results from both experiments and FE model show that a simple deflection shape with one or two major displacement peak regions of the TM in normal ear was observed at low frequencies (1 kHz and below) while complicated ring-like pattern of the deflection shapes appeared at higher frequencies (4 kHz and above). The liquid in middle ear mainly affected TM deflection shapes at the frequencies higher than 1 kHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  • Aarnisalo AA, Cheng JT, Ravicz ME, Furlong C, Merchant SN, Rosowski JJ (2010) Motion of the tympanic membrane after cartilage tympanoplasty determined by stroboscopic holography. Hear Res 263:78–84

    Article  PubMed Central  PubMed  Google Scholar 

  • Carrie S, Hutton DA, Birchall JP, Green GGR, Pearson JP (1992) Otitis-media with effusion - components which contribute to the viscous properties. Acta Otolaryngol (Stockh) 112:504–511

    Article  CAS  Google Scholar 

  • Cheng JT, Aarnisalo AA, Harrington E, Hernandez-Montes MS, Furlong C, Merchant SN, Rosowski JJ (2010) Motion of the surface of the human tympanic membrane measured with stroboscopic holography. Hear Res 263:66–77

    Article  PubMed Central  PubMed  Google Scholar 

  • Cheng JT, Hamade M, Merchant SN, Rosowski JJ (2013) Wave motion on the surface of the human tympanic membrane: holographic measurement and modeling analysis. J Acoust Soc Am 133:918–937

    Article  PubMed Central  PubMed  Google Scholar 

  • Dai C, Wood MW, Gan RZ (2007) Tympanometry and laser Doppler interferometry measurements on otitis media with effusion model in human temporal bones. Otol Neurotol 28:551–558

    Article  PubMed  Google Scholar 

  • Dai C, Wood MW, Gan RZ (2008) Combined effect of fluid and pressure on middle ear function. Hear Res 236:22–32

    Article  PubMed Central  PubMed  Google Scholar 

  • Del Socorro Hernandez-Montes M, Furlong C, Rosowski JJ, Hulli N, Harrington E, Cheng JT, Ravicz ME, Santoyo FM (2009) Optoelectronic holographic otoscope for measurement of nano-displacements in tympanic membranes. J Biomed Opt 14:034023

  • Djalilian HR, Ridgway J, Tam M, Sepehr A, Chen Z, Wong BJ (2008) Imaging the human tympanic membrane using optical coherence tomography in vivo. Otol Neurotol 29:1091–1094

    Article  PubMed Central  PubMed  Google Scholar 

  • Fay J, Puria S, Decraemer WF, Steele C (2005) Three approaches for estimating the elastic modulus of the tympanic membrane. J Biomech 38:1807–1815

    Article  PubMed  Google Scholar 

  • Funnell WR, Laszlo CA (1978) Modeling of the cat eardrum as a thin shell using the finite-element method. J Acoust Soc Am 63:1461–1467

    Article  CAS  PubMed  Google Scholar 

  • Funnell WR, Decraemer WF, Khanna SM (1987) On the damped frequency response of a finite-element model of the cat eardrum. J Acoust Soc Am 81:1851–1859

    Article  CAS  PubMed  Google Scholar 

  • Furlong C, Rosowski JJ, Hulli N, Ravicz ME (2009) Preliminary analyses of tympanic-membrane motion from holographic measurements. Strain 45:301–309

    Article  PubMed Central  PubMed  Google Scholar 

  • Gan RZ, Wang X (2007) Multifield coupled finite element analysis for sound transmission in otitis media with effusion. J Acoust Soc Am 122:3527–3538

    Article  PubMed  Google Scholar 

  • Gan RZ, Wood MW, Dormer KJ (2004a) Human middle ear transfer function measured by double laser interferometry system. Otol Neurotol 25:423–435

    Article  PubMed  Google Scholar 

  • Gan RZ, Feng B, Sun Q (2004b) Three-dimensional finite element modeling of human ear for sound transmission. Ann Biomed Eng 32:847–859

    Article  PubMed  Google Scholar 

  • Gan RZ, Sun Q, Feng B, Wood MW (2006a) Acoustic–structural coupled finite element analysis for sound transmission in human ear—pressure distributions. Med Eng Phys 28:394–405

    Article  Google Scholar 

  • Gan RZ, Dai C, Wood MW (2006b) Laser interferometry measurements of middle ear fluid and pressure effects on sound transmission. J Acoust Soc Am 120:3799–3810

    Article  PubMed  Google Scholar 

  • Gan RZ, Reeves BP, Wang X (2007) Modeling of sound transmission from ear canal to cochlea. Ann Biomed Eng 35:2180–2195

    Article  PubMed  Google Scholar 

  • Gan RZ, Zhang X, Guan X (2011) Modeling analysis of biomechanical changes of middle ear and cochlea in otitis media. AIP Conf Proc 1403:539–544

    Article  Google Scholar 

  • Goode RL (1994) Middle ear transmission disorders by laser-Doppler vibrometry. Acta Otolaryngol 114:679–681

    Article  CAS  PubMed  Google Scholar 

  • Goode RL, Ball G, Nishihara S, Nakamura K (1996) Laser Doppler vibrometer (LDV)–a new clinical tool for the otologist. Am J Otol 17:813–822

    CAS  PubMed  Google Scholar 

  • Huber AM, Schwab C, Linder T, Stoeckli SJ, Ferrazzini M, Dillier N, Fisch U (2001) Evaluation of eardrum laser Doppler interferometry as a diagnostic tool. Laryngoscope 111:501–507

    Article  CAS  PubMed  Google Scholar 

  • Jakob A, Bornitz M, Kuhlisch E, Zahnert T (2009) New aspects in the clinical diagnosis of otosclerosis using laser Doppler vibrometry. Otol Neurotol 30:1049–1057

    Article  PubMed  Google Scholar 

  • Koike T, Wada H, Kobayashi T (2002) Modeling of the human middle ear using the finite-element method. J Acoust Soc Am 111:1306–1317

    Article  PubMed  Google Scholar 

  • Lupovich P, Paradise JL, Blueston CD, Harkins M (1971) Middle ear effusions - preliminary viscometric, histologic and biochemical studies. Ann Otol Rhinol Laryngol 80:342–346

    Article  CAS  PubMed  Google Scholar 

  • Maftoon N, Funnell WR, Daniel SJ, Decraemer WF (2013) Experimental study of vibrations of gerbil tympanic membrane with closed middle ear cavity. JARO 14:467–481

    Article  PubMed Central  PubMed  Google Scholar 

  • Puria S, Allen JB (1998) Measurements and model of the cat middle ear: evidence of tympanic membrane acoustic delay. J Acoust Soc Am 104:3463–3481

    Article  CAS  PubMed  Google Scholar 

  • Rosowski JJ, Mehta RP, Merchant SN (2003) Diagnostic utility of laser-Doppler vibrometry in conductive hearing loss with normal tympanic membrane. Otol Neurotol 24:165–175

    Article  PubMed Central  PubMed  Google Scholar 

  • Rosowski JJ, Nakajima HH, Merchant SN (2008) Clinical utility of laser-Doppler vibrometer measurements in live normal and pathologic human ears. Ear Hear 29:3–19

    PubMed Central  PubMed  Google Scholar 

  • Rosowski JJ, Cheng JT, Ravicz ME, Hulli N, Hernandez-Montes MS, Harrington E, Furlong C (2009) Computer-assisted time-averaged holograms of the motion of the surface of the mammalian tympanic membrane with sound stimuli of 0.4-25 kHz. Hear Res 253:83–96

    Article  PubMed Central  PubMed  Google Scholar 

  • Rosowski JJ, Cheng JT, Merchant SN, Harrington E, Furlong C (2011) New data on the motion of the normal and reconstructed tympanic membrane. Otol Neurotol 32:1559–1567

    Article  PubMed Central  PubMed  Google Scholar 

  • Rovers MM, Schilder AG, Zielhuis GA, Rosenfeld RM (2004) Otitis media. Lancet 363:465–473

    Article  PubMed  Google Scholar 

  • Sun Q, Gan RZ, Chang KH, Dormer KJ (2002) Computer-integrated finite element modeling of human middle ear. Biomech Model Mechanobiol 1:109–122

    Article  CAS  PubMed  Google Scholar 

  • Tonndorf J, Khanna SM (1972) Tympanic-membrane vibrations in human cadaver ears studied by time averaged holography. J Acoust Soc Am 52:1221–1233

    Article  CAS  PubMed  Google Scholar 

  • von Unge M, Bagger-Sjoback D (1994) Tympanic membrane changes in experimental otitis media with effusion. Am J Otol 15:663–669

    Google Scholar 

  • Wada H, Metoki T, Kobayashi T (1992) Analysis of dynamic behavior of human middle ear using a finite-element method. J Acoust Soc Am 92:3157–3168

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Cheng T, Gan RZ (2007) Finite-element analysis of middle-ear pressure effects on static and dynamic behavior of human ear. J Acoust Soc Am 122:906–917

    Article  PubMed  Google Scholar 

  • Whittemore KR Jr, Merchant SN, Poon BB, Rosowski JJ (2004) A normative study of tympanic membrane motion in humans using a laser Doppler vibrometer (LDV). Hear Res 187:85–104

    Article  PubMed  Google Scholar 

  • Zhang X, Gan RZ (2011) A comprehensive model of human ear for analysis of implantable hearing devices. IEEE Trans Biomed Eng 58:3024–3027

    Article  PubMed  Google Scholar 

  • Zhang X, Gan RZ (2013) Finite element modeling of energy absorbance in normal and disordered human ears. Hear Res 301:146–155

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH R01DC011585.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Z. Gan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Guan, X., Nakmali, D. et al. Experimental and Modeling Study of Human Tympanic Membrane Motion in the Presence of Middle Ear Liquid. JARO 15, 867–881 (2014). https://doi.org/10.1007/s10162-014-0482-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-014-0482-8

Keywords

Navigation