Skip to main content
Log in

Detection of Modulated Tones in Modulated Noise by Non-human Primates

  • Research Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

In natural environments, many sounds are amplitude-modulated. Amplitude modulation is thought to be a signal that aids auditory object formation. A previous study of the detection of signals in noise found that when tones or noise were amplitude-modulated, the noise was a less effective masker, and detection thresholds for tones in noise were lowered. These results suggest that the detection of modulated signals in modulated noise would be enhanced. This paper describes the results of experiments investigating how detection is modified when both signal and noise were amplitude-modulated. Two monkeys (Macaca mulatta) were trained to detect amplitude-modulated tones in continuous, amplitude-modulated broadband noise. When the phase difference of otherwise similarly amplitude-modulated tones and noise were varied, detection thresholds were highest when the modulations were in phase and lowest when the modulations were anti-phase. When the depth of the modulation of tones or noise was varied, detection thresholds decreased if the modulations were anti-phase. When the modulations were in phase, increasing the depth of tone modulation caused an increase in tone detection thresholds, but increasing depth of noise modulations did not affect tone detection thresholds. Changing the modulation frequency of tone or noise caused changes in threshold that saturated at modulation frequencies higher than 20 Hz; thresholds decreased when the tone and noise modulations were in phase and decreased when they were anti-phase. The relationship between reaction times and tone level were not modified by manipulations to the nature of temporal variations in the signal or noise. The changes in behavioral threshold were consistent with a model where the brain subtracted noise from signal. These results suggest that the parameters of the modulation of signals and maskers heavily influence detection in very predictable ways. These results are consistent with some results in humans and avians and form the baseline for neurophysiological studies of mechanisms of detection in noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  • Baccus SA, Olveczky BP, Manu M, Meister M (2008) A retinal circuit that computes object motion. J Neurosci 28:6807–6817

    Article  PubMed  CAS  Google Scholar 

  • Bacon SP, Opie JM, Montoya DY (1998) The effects of hearing loss and noise masking on the masking release for speech in temporally complex backgrounds. J Speech Lang Hear Res 41:549–563

    Article  PubMed  CAS  Google Scholar 

  • Bee MA, Micheyl C (2008) The cocktail party problem: what is it? How can it be solved? And why should animal behaviorists study it? J Comp Psychol 122:235–251

    Article  PubMed  PubMed Central  Google Scholar 

  • Bee MA, Buschermohle M, Klump GM (2007) Detecting modulated signals in modulated noise: (II) neural thresholds in the songbird forebrain. Eur J Neurosci 26:1979–1994

    Article  PubMed  Google Scholar 

  • Borrill SJ, Moore BC (2002) Evidence that comodulation detection differences depend on within-channel mechanisms. J Acoust Soc Am 111:309–319

    Article  PubMed  Google Scholar 

  • Bregman AS (1994) Auditory scene analysis: the perceptual organization of sound. MIT Press, Cambridge

    Google Scholar 

  • Cohen MF, Schubert ED (1987) The effect of cross-spectrum correlation on the detectability of a noise band. J Acoust Soc Am 81:721–723

    Article  PubMed  CAS  Google Scholar 

  • Davis KA, Ramachandran R, May BJ (2003) Auditory processing of spectral cues for sound localization in the inferior colliculus. J Assoc Res Otolaryngol 4:148–163

    Article  PubMed  PubMed Central  Google Scholar 

  • Durlach NI (1963) Equalization and cancellation theory of binaural masking level differences. J Acoust Soc Am 35:1206–1218

    Article  Google Scholar 

  • Dylla M, Hrnicek A, Rice C, Ramachandran R (2013) Detection of tones and their modification by noise in nonhuman primates. J Assoc Res Otolaryngol 14:547–560

    Article  PubMed  PubMed Central  Google Scholar 

  • Efron B, Tishirani RJ (1993) An introduction to the bootstrap. Chapman & Hall/CRC, Boca Raton

    Book  Google Scholar 

  • Fantini DA (1991) The processing of envelope information in comodulation masking release (CMR) and envelope discrimination. J Acoust Soc Am 90:1876–1888

    Article  PubMed  CAS  Google Scholar 

  • Fantini DA, Moore BC (1994) Profile analysis and comodulation detection differences using narrow bands of noise and their relation to comodulation masking release. J Acoust Soc Am 95:2180–2191

    Article  PubMed  CAS  Google Scholar 

  • Fishman YI, Steinschneider M (2010) Neural correlates of auditory scene analysis based on inharmonicity in monkey primary auditory cortex. J Neurosci 30:12480–12494

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fishman YI, Volkov IO, Noh MD, Garell PC, Bakken H, Arezzo JC, Howard MA, Steinschneider M (2001) Consonance and dissonance of musical chords: neural correlates in auditory cortex of monkeys and humans. J Neurophysiol 86:2761–2788

    PubMed  CAS  Google Scholar 

  • Fishman YI, Micheyl C, Steinschneider M (2012) Neural mechanisms of rhythmic masking release in monkey primary auditory cortex: implications for models of auditory scene analysis. J Neurophysiol 107:2366–2382

    Article  PubMed  PubMed Central  Google Scholar 

  • Gans C (1992) An overview of the evolutionary biology of hearing. In: Webster DB, Fay RR, Popper AN (eds) The evolutionary biology of hearing. Springer, New York, pp 3–13

    Chapter  Google Scholar 

  • Gockel H, Carlyon RP, Micheyl C (1999) Context dependence of fundamental-frequency discrimination: lateralized temporal fringes. J Acoust Soc Am 106:3553–3563

    Article  PubMed  CAS  Google Scholar 

  • Green DM, Swets JA (1966) Signal detection theory and psychophysics. Krieger, Huntingdon

    Google Scholar 

  • Green DM, McKey MJ, Licklider JCR (1959) Detection of a pulsed sinusoid in noise as a function of frequency. J Acoust Soc Am 31:1446–1452

    Article  Google Scholar 

  • Grose JH, Hall JW 3rd (1989) Comodulation masking release using SAM tonal complex maskers: effects of modulation depth and signal position. J Acoust Soc Am 85:1276–1284

    Article  PubMed  CAS  Google Scholar 

  • Gustafsson HA, Arlinger SD (1994) Masking of speech by amplitude-modulated noise. J Acoust Soc Am 95:518–529

    Article  PubMed  CAS  Google Scholar 

  • Gutschalk A, Micheyl C, Melcher JR, Rupp A, Scherg M, Oxenham AJ (2005) Neuromagnetic correlates of streaming in human auditory cortex. J Neurosci 25:5382–5388

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hall JW (1986) The effect of across-frequency differences in masking level on spectro-temporal pattern analysis. J Acoust Soc Am 79:781–787

    Article  PubMed  CAS  Google Scholar 

  • Hall JW, Haggard MP, Fernandes MA (1984) Detection in noise by spectro-temporal pattern analysis. J Acoust Soc Am 76:50–56

    Article  PubMed  CAS  Google Scholar 

  • Hall JW 3rd, Grose JH, Haggard MP (1988) Comodulation masking release for multicomponent signals. J Acoust Soc Am 83:677–686

    Article  PubMed  Google Scholar 

  • Hawkins JEJ, Stevens SS (1950) The masking of pure tones and of speech by white noise. J Acoust Soc Am 22:6–13

    Article  Google Scholar 

  • Jensen KK (2007) Comodulation detection differences in the hooded crow (Corvus corone cornix), with direct comparison to human subjects. J Acoust Soc Am 121:1783–1789

    Article  PubMed  Google Scholar 

  • Johnson JS, Yin P, O’Connor KN, Sutter ML (2012) Ability of primary auditory cortical neurons to detect amplitude modulation with rate and temporal codes: neurometric analysis. J Neurophysiol 107:3325–3341

    Article  PubMed  PubMed Central  Google Scholar 

  • Joris PX, Smith PH, Yin TC (1994) Enhancement of neural synchronization in the anteroventral cochlear nucleus. II. Responses in the tuning curve tail. J Neurophysiol 71:1037–1051

    PubMed  CAS  Google Scholar 

  • Julesz B (1986) Texton gradients: the texton theory revisited. Biol Cyber 54:245–251

    Article  CAS  Google Scholar 

  • Kidd G Jr, Mason CR, Deliwala PS, Woods WS, Colburn HS (1994) Reducing informational masking by sound segregation. J Acoust Soc Am 95:3475–3480

    Article  PubMed  Google Scholar 

  • Kidd G Jr, Mason CR, Dai H (1995) Discriminating coherence in spectro-temporal patterns. J Acoust Soc Am 97:3782–3790

    Article  PubMed  Google Scholar 

  • Kidd G Jr, Mason CR, Arbogast TL (2002) Similarity, uncertainty, and masking in the identification of nonspeech auditory patterns. J Acoust Soc Am 111:1367–1376

    Article  PubMed  Google Scholar 

  • Krishna BS, Semple MN (2000) Auditory temporal processing: responses to sinusoidally amplitude-modulated tones in the inferior colliculus. J Neurophysiol 84:255–273

    PubMed  CAS  Google Scholar 

  • Langemann U, Klump GM (2001) Signal detection in amplitude-modulated maskers. I. Behavioural auditory thresholds in a songbird. Eur J Neurosci 13:1025–1032

    Article  PubMed  CAS  Google Scholar 

  • Langemann U, Klump GM (2007) Detecting modulated signals in modulated noise: (I) behavioural auditory thresholds in a songbird. Eur J Neurosci 26:1969–1978

    Article  PubMed  Google Scholar 

  • Langner G, Schreiner CE (1988) Periodicity coding in the inferior colliculus of the cat. I. Neuronal mechanisms. J Neurophysiol 60:1799–1822

    PubMed  CAS  Google Scholar 

  • Macmillan NA, Creelman CD (2005) Detection theory: a user’s guide, 2nd edn. Lawrence Erlbaum Associates, Mahwah

    Google Scholar 

  • Malone BJ, Scott BH, Semple MN (2007) Dynamic amplitude coding in the auditory cortex of awake rhesus macaques. J Neurophysiol 98:1451–1474

    Article  PubMed  Google Scholar 

  • Malone BJ, Scott BH, Semple MN (2010) Temporal codes for amplitude contrast in auditory cortex. J Neurosci 30:767–784

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • McFadden D (1986) Comodulation masking release: effects of varying the level, duration, and time delay of the cue band. J Acoust Soc Am 80:1658–1667

    Article  PubMed  CAS  Google Scholar 

  • McFadden D (1987) Comodulation detection differences using noise-band signals. J Acoust Soc Am 81:1519–1527

    Article  PubMed  CAS  Google Scholar 

  • McFadden D, Wright BA (1990) Temporal decline of masking and comodulation detection differences. J Acoust Soc Am 88:711–724

    Article  PubMed  CAS  Google Scholar 

  • Micheyl C, Carlyon RP (1998) Effects of temporal fringes on fundamental-frequency discrimination. J Acoust Soc Am 104:3006–3018

    Article  PubMed  CAS  Google Scholar 

  • Micheyl C, Tian B, Carlyon RP, Rauschecker JP (2005) Perceptual organization of tone sequences in the auditory cortex of awake macaques. Neuron 48:139–148

    Article  PubMed  CAS  Google Scholar 

  • Micheyl C, Carlyon RP, Gutschalk A, Melcher JR, Oxenham AJ, Rauschecker JP, Tian B, Courtenay Wilson E (2007) The role of auditory cortex in the formation of auditory streams. Hear Res 229:116–131

    Article  PubMed  PubMed Central  Google Scholar 

  • Moller AR (1976) Dynamic properties of the responses of single neurones in the cochlear nucleus of the rat. J Physiol 259:63–82

    PubMed  CAS  PubMed Central  Google Scholar 

  • Moore BCJ (2003) An introduction to the psychology of hearing, 5th edn. Academic, San Diego

    Google Scholar 

  • Moore BC, Borrill SJ (2002) Tests of a within-channel account of comodulation detection differences. J Acoust Soc Am 112:2099–2109

    Article  PubMed  Google Scholar 

  • Muller-Preuss P, Flachskamm C, Bieser A (1994) Neural encoding of amplitude modulation within the auditory midbrain of squirrel monkeys. Hear Res 80:197–208

    Article  PubMed  CAS  Google Scholar 

  • Nelken I, Bar-Yosef O (2008) Neurons and objects: the case of auditory cortex. Front Neurosci 2:107–113

    Article  PubMed  PubMed Central  Google Scholar 

  • Nelken I, Rotman Y, Bar Yosef O (1999) Responses of auditory-cortex neurons to structural features of natural sounds. Nature 397:154–157

    Article  PubMed  CAS  Google Scholar 

  • Nelson PC, Carney LH (2007) Neural rate and timing cues for detection and discrimination of amplitude-modulated tones in the awake rabbit inferior colliculus. J Neurophysiol 97:522–539

    Article  PubMed  PubMed Central  Google Scholar 

  • Neuert V, Verhey JL, Winter IM (2004) Responses of dorsal cochlear nucleus neurons to signals in the presence of modulated maskers. J Neurosci 24:5789–5797

    Article  PubMed  CAS  Google Scholar 

  • Niwa M, Johnson JS, O’Connor KN, Sutter ML (2012a) Activity related to perceptual judgment and action in primary auditory cortex. J Neurosci 32:3193–3210

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Niwa M, Johnson JS, O’Connor KN, Sutter ML (2012b) Active engagement improves primary auditory cortical neurons’ ability to discriminate temporal modulation. J Neurosci 32:9323–9334

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nothdurft HC (1994) Common properties of visual segmentation. Ciba Found Symp 184:245–259, discussion 260–271

    PubMed  CAS  Google Scholar 

  • Olveczky BP, Baccus SA, Meister M (2003) Segregation of object and background motion in the retina. Nature 423:401–408

    Article  PubMed  Google Scholar 

  • Pfingst BE, Hienz R, Miller J (1975) Reaction-time procedure for measurement of hearing. II. Threshold functions. J Acoust Soc Am 57:431–436

    Article  PubMed  CAS  Google Scholar 

  • Pfingst BE, Laycock J, Flammino F, Lonsbury-Martin B, Martin G (1978) Pure tone thresholds for the rhesus monkey. Hear Res 1:43–47

    Article  PubMed  CAS  Google Scholar 

  • Pressnitzer D, Meddis R, Delahaye R, Winter IM (2001) Physiological correlates of comodulation masking release in the mammalian ventral cochlear nucleus. J Neurosci 21:6377–6386

    PubMed  CAS  Google Scholar 

  • Ramachandran R, Lisberger SG (2005) Normal performance and expression of learning in the vestibulo-ocular reflex (VOR) at high frequencies. J Neurophysiol 93:2028–2038

    Article  PubMed  PubMed Central  Google Scholar 

  • Rees A, Moller AR (1983) Responses of neurons in the inferior colliculus of the rat to AM and FM tones. Hear Res 10:301–330

    Article  PubMed  CAS  Google Scholar 

  • Rhode WS, Greenberg S (1994) Encoding of amplitude modulation in the cochlear nucleus of the cat. J Neurophysiol 71:1797–1825

    PubMed  CAS  Google Scholar 

  • Schooneveldt GP, Moore BC (1989) Comodulation masking release for various monaural and binaural combinations of the signal, on-frequency, and flanking bands. J Acoust Soc Am 85:262–272

    Article  PubMed  CAS  Google Scholar 

  • Stebbins WC, Green S, Miller FL (1966) Auditory sensitivity of the monkey. Science (New York NY) 153:1646–1647

    Article  CAS  Google Scholar 

  • Velez A, Bee MA (2010) Signal recognition by frogs in the presence of temporally fluctuating chorus-shaped noise. Behav Ecol Sociobiol 64(10):1695–1709

    Article  PubMed  PubMed Central  Google Scholar 

  • Velez A, Bee MA (2011) Dip listening and the cocktail party problem in grey treefrogs: signal recognition in temporally fluctuating noise. Anim Behav 82(6):1319–1327

    Article  PubMed  PubMed Central  Google Scholar 

  • Wakefield GH, Edwards B (1987) Discrimination of envelope phase disparity. J Acoust Soc Am Suppl I 82:S41

  • Wakefield GH, Viemeister NF (1990) Discrimination of modulation depth of sinusoidal amplitude modulation (SAM) noise. J Acoust Soc Am 88:1367–1373

    Article  PubMed  CAS  Google Scholar 

  • Wright BA (1990) Comodulation detection differences with multiple signal bands. J Acoust Soc Am 87:292–303

    Article  PubMed  CAS  Google Scholar 

  • Yin P, Johnson JS, O’Connor KN, Sutter ML (2011) Coding of amplitude modulation in primary auditory cortex. J Neurophysiol 105:582–600

    Article  PubMed  PubMed Central  Google Scholar 

  • Yost WA, Sheft S (1989) Across-critical-band processing of amplitude-modulated tones. J Acoust Soc Am 85:848–857

    Article  PubMed  CAS  Google Scholar 

  • Zar JH (1984) Biostatistical analysis. Prentice-Hall, Englewood Cliffs

    Google Scholar 

Download references

Acknowledgments

This research was funded by a grant from the National Institutes of Health, R01 DC 11092. The authors would like to thank Mary Feurtado for the help during surgery, Bruce and Roger Williams for the hardware. Meagan Quinlan and Dr. Jason Grigsby collected some preliminary data and performed some preliminary data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramnarayan Ramachandran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bohlen, P., Dylla, M., Timms, C. et al. Detection of Modulated Tones in Modulated Noise by Non-human Primates. JARO 15, 801–821 (2014). https://doi.org/10.1007/s10162-014-0467-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-014-0467-7

Keywords

Navigation