Skip to main content
Log in

Antioxidants Reduce Cellular and Functional Changes Induced by Intense Noise in the Inner Ear and Cochlear Nucleus

  • Research Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

An Erratum to this article was published on 28 February 2014

ABSTRACT

The present study marks the first evaluation of combined application of the antioxidant N-acetylcysteine (NAC) and the free radical spin trap reagent, disodium 2,4-disulfophenyl-N-tert-butylnitrone (HPN-07), as a therapeutic approach for noise-induced hearing loss (NIHL). Pharmacokinetic studies and C-14 tracer experiments demonstrated that both compounds achieve high blood levels within 30 min after i.p injection, with sustained levels of radiolabeled cysteine (released from NAC) in the cochlea, brainstem, and auditory cortex for up to 48 h. Rats exposed to 115 dB octave-band noise (10–20 kHz) for 1 h were treated with combined NAC/HPN-07 beginning 1 h after noise exposure and for two consecutive days. Auditory brainstem responses (ABR) showed that treatment substantially reduced the degree of threshold shift across all test frequencies (2–16 kHz), beginning at 24 h after noise exposure and continuing for up to 21 days. Reduced distortion product otoacoustic emission (DPOAE) level shifts were also detected at 7 and 21 days following noise exposure in treated animals. Noise-induced hair cell (HC) loss, which was localized to the basal half of the cochlea, was reduced in treated animals by 85 and 64 % in the outer and inner HC regions, respectively. Treatment also significantly reduced an increase in c-fos-positive neuronal cells in the cochlear nucleus following noise exposure. However, no detectable spiral ganglion neuron loss was observed after noise exposure. The results reported herein demonstrate that the NAC/HPN-07 combination is a promising pharmacological treatment of NIHL that reduces both temporary and permanent threshold shifts after intense noise exposure and acts to protect cochlear sensory cells, and potentially afferent neurites, from the damaging effects of acoustic trauma. In addition, the drugs were shown to reduce aberrant activation of neurons in the central auditory regions of the brain following noise exposure. It is likely that the protective mechanisms are related to preservation of structural components of the cochlea and blocking the activation of immediate early genes in the auditory centers of the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13
FIG. 14
FIG. 15
FIG. 16

Similar content being viewed by others

REFERENCES

  • Amarnath K, Amarnath V, Amarnath K, Valentine HL, Valentine WM (2003) A specific HPLC-UV method for the determination of cysteine and related aminothiols in biological samples. Talanta 60(6):1229–1238

    Article  CAS  PubMed  Google Scholar 

  • Ashmore JF (1987) A fast motile response in guinea pig outer hair cells: the cellular basis of the cochlear amplifier. J Physiol (London) 388:323–347

    CAS  Google Scholar 

  • Brown MC, Liu TS (1995) Fos-like immunoreactivity in central auditory neurons of the mouse. J Comp Neurol 357(1):85–97

    Article  CAS  PubMed  Google Scholar 

  • Brozoski TJ, Bauer CA, Caspary DM (2002) Elevated fusiform cell activity in the dorsal cochlear nucleus of chinchillas with psychophysical evidence of tinnitus. J Neurosci 22:2383–2390

    CAS  PubMed  Google Scholar 

  • Chen GD (2006) Prestin gene expression in the rat cochlea following intense noise exposure. Hear Res 222:54–61

    Article  CAS  PubMed  Google Scholar 

  • Chen G-D, Fechter LD (2003) The relationship between noise-induced hearing loss and hair cell loss in rats. Hear Res 177:81–90

    Article  PubMed  Google Scholar 

  • Chen GD, Liu Y (2005) Mechanisms of noise-induced hearing loss potentiation by hypoxia. Hear Res 200:1–9

    Article  PubMed  Google Scholar 

  • Chen GD, Zhao HB (2007) Effects of intense noise exposure on the outer hair cell plasma membrane fluidity. Hear Res 226:14–21

    Article  CAS  PubMed  Google Scholar 

  • Chen GD, Tanaka C, Henderson D (2008) Relation between outer hair cell loss and hearing loss in rats exposed to styrene. Hear Res 243:28–34

    Article  CAS  PubMed  Google Scholar 

  • Choi C, Chen K, Vasquez-Weldon A, Jackson RL, Floyd RA, Kopke RD (2008) Effectiveness of 4-OHPBN alone and in combination with other antioxidant drugs in the treatment of acute acoustic trauma in chinchilla. Free Radic Biol Med 44:1772–1784

    Article  CAS  PubMed  Google Scholar 

  • Choi C, Chen K, Du X, Floyd RA, Kopke RD (2011) Effects of delayed and extended antioxidant treatment on acute acoustic trauma. Free Radic Res 45(10):1162–1172

    Article  CAS  PubMed  Google Scholar 

  • Clausen F, Marklund N, Lewén A, Hillered L (2008) The nitrone free radical scavenger NXY-059 is neuroprotective when administered after traumatic brain injury in the rat. J Neurotrauma 25(12):1449–1457

    Article  PubMed  Google Scholar 

  • Coling DE, Yu KC, Somand D, Satar B, Bai U, Huang TT, Seidman MD, Epstein CJ, Mhatre AN, Lalwani AK (2003) Effect of SOD1 overexpression on age- and noise-related hearing loss. Free Radic Biol Med 34:873–880

    Google Scholar 

  • Dehmel S, Pradhan S, Koehler S, Bledsoe S, Shore S (2012) Noise overexposure alters long-term somatosensory-auditory processing in the dorsal cochlear nucleus—possible basis for tinnitus-related hyperactivity? J Neurosci 32(5):1660–1671. doi:10.1523/JNEUROSCI.4608-11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dong S, Mulders W, Rodger J, Woo S, Robertson D (2010) Acoustic trauma evokes hyperactivity and changes in gene expression in guinea-pig auditory brainstem. Eur J Neurosci 31:1616–1628

    PubMed  Google Scholar 

  • Du X, Chen K, Choi CH, Li W, Cheng W, Stewart C, Hu N, Floyd RA, Kopke RD (2012) Selective degeneration of synapses in the dorsal cochlear nucleus of chinchilla following acoustic trauma and effects of antioxidant treatment. Hear Res 283(1–2):1–13

    Article  CAS  PubMed  Google Scholar 

  • Du X, Ewert DL, Cheng W, West MB, Lu J, Li W, Floyd RA, Kopke RD (2013) Effects of antioxidant treatment on blast-induced brain injury. PLoS One. 8(11): e80138. doi:10.1371/journal.pone.0080138

  • Ehret G, Fischer R (1991) Neuronal activity and tonotopy in the auditory system visualized by c-fos gene expression. Brain Res 567(2):350–354

    Article  CAS  PubMed  Google Scholar 

  • Elshorbagy AK, Valdivia-Garcia M, Mattocks DA, Plummer JD, Smith AD, Drevon CA, Refsum H, Perrone CE (2011) Cysteine supplementation reverses methionine restriction effects on rat adiposity: significance of stearoyl-coenzyme A desaturase. J Lipid Research 52:104–112

    Article  CAS  Google Scholar 

  • Ewert DL, Lu J, Li W, Du X, Floyd R, Kopke R (2012) Antioxidant treatment reduces blast-induced cochlear damage and hearing loss. Hear Res 285:29–39

    Article  CAS  PubMed  Google Scholar 

  • Feng J, Bendiske J, Morest DK (2012) Degeneration in the ventral cochlear nucleus after severe noise damage in mice. J Neurosci Res 90(4):831–841

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fetoni AR, Ralli M, Sergi B, Parrilla C, Troiani D, Paludetti G (2009) Protective effects of N-acetylcysteine on noise-induced hearing loss in guinea pigs. Acta Otorhinolaryngol Ital 29:70–75

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fetoni AR, De Bartolo P, Eramo SL, Rolesi R, Paciello F, Bergamini C, Fato R, Paludetti G, Petrosini L, Troiani D (2013) Noise-induced hearing loss (NIHL) as a target of oxidative stress-mediated damage: cochlear and cortical responses after an increase in antioxidant defense. J Neurosci 33(9):4011–4023. doi:10.1523/JNEUROSCI.2282-12.2013

    Article  CAS  PubMed  Google Scholar 

  • Gleich O, Bielenberg K, Strutz J (1995) Sound induced expression of c-Fos in GABA positive neurones of the gerbil cochlear nucleus. Neuroreport 7(1):29–32

    Article  CAS  PubMed  Google Scholar 

  • Green AR, Ashwood T, Odergren T, Jackson DM (2003) Nitrones as neuroprotective agents in cerebral ischemia, with particular reference to NXY- 059. Pharmacol Ther 100:195–214

    Article  CAS  PubMed  Google Scholar 

  • Gröschel M, Götze R, Ernst A, Basta D (2010) Differential impact of temporary and permanent noise-induced hearing loss on neuronal cell density in the mouse central auditory pathway. J Neurotrauma 27:1499–1507

    Article  PubMed  Google Scholar 

  • Hainsworth AH, Bhuiyan N, Green AR (2008) The nitrone disodium 2,4-sulphophenyl-N-tert-butylnitrone is without cytoprotective effect on sodium nitroprusside-induced cell death in N1E-115 neuroblastoma cells in vitro. J Cereb Blood Flow Metab 28:24–28

    Article  CAS  PubMed  Google Scholar 

  • Hall RD (1990) Estimation of surviving spiral ganglion cells in the deaf rat using the electrically evoked auditory brainstem response. Hear Res 45(1–2):123–136

    Article  CAS  PubMed  Google Scholar 

  • Hamernik RP, Hsueh DD (1991) Impulse noise: some definitions, physical acoustics and other considerations. J Acoust Soc Am 90:189–195

    Article  CAS  PubMed  Google Scholar 

  • Hamernik RP, Turrentine G, Roberto M, Salvi R, Henderson D (1984) Anatomical correlates of impulse noise-induced mechanical damage in the cochlea. Hear Res 3:229–247

    Article  Google Scholar 

  • Hamernik RP, Ahroon WA, Hsueh DD (1991) The energy spectrum of an impulse: its relation to hearing loss. J Acoust Soc Am 90:197–204

    Article  CAS  PubMed  Google Scholar 

  • Henderson D, Bielefeld EC, Harris KC, Hu BH (2006) The role of oxidative stress in noise-induced hearing loss. Ear Hear 27:1–19

    Article  PubMed  Google Scholar 

  • Hight NG, McFadden SL, Henderson D, Burkard RF, Nicotera T (2003) Noise-induced hearing loss in chinchillas pre-treated with glutathione monoethylester and R-PIA. Hear Res 179:21–32

    Article  CAS  PubMed  Google Scholar 

  • Hu BH, Zheng XY, McFadden SL, Kopke RD, Henderson D (1997) R-Phenylisopropyladenosine attenuates noise-induced hearing loss in the chinchilla. Hear Res 113:198–206

    Article  CAS  PubMed  Google Scholar 

  • Hu BH, Guo W, Wang PY, Henderson D, Jiang SC (2000) Intense noise-induced apoptosis in hair cells of guinea pig cochleae. Acta Otolaryngol 120:19–24

    Article  CAS  PubMed  Google Scholar 

  • Hu BH, Henderson D, Nicotera TM (2002) Involvement of apoptosis in progression of cochlear lesion following exposure to intense noise. Hear Res 166:62–71

    Article  PubMed  Google Scholar 

  • Kai N, Niki H (2002) Altered tone-induced Fos expression in the mouse inferior colliculus after early exposure to intense noise. Neurosci Res 44(3):305–313

    Article  CAS  PubMed  Google Scholar 

  • Kaltenbach JA, Zacharek MA, Zhang J, Frederick S (2004) Activity in the dorsal cochlear nucleus of hamsters previously tested for tinnitus following intense tone exposure. Neurosci Lett 355:121e–125e

    Article  Google Scholar 

  • Kim JJ, Gross J, Morest DK, Potashner SJ (2004) Quantitative study of degeneration and new growth of axons and synaptic endings in the chinchilla cochlear nucleus after acoustic overstimulation. J Neurosci Res 77:8

    Google Scholar 

  • Kopke RD, Weisskopf PA, Boone JL, Jackson RL, Wester DC et al (2000) Reduction of noise-induced hearing loss using L-NAC and salicylate in the chinchilla. Hear Res 149:138–146

    Article  CAS  PubMed  Google Scholar 

  • Kopke RD, Coleman JK, Liu J, Campbell KC, Riffenburgh RH (2002) Candidate’s thesis: enhancing intrinsic cochlear stress defenses to reduce noise-induced hearing loss. Laryngoscope 112:1515–1532

    Article  CAS  PubMed  Google Scholar 

  • Kopke RD, Jackson RL, Coleman JK, Liu J, Bielefeld EC, Balough BJ (2007) NAC for noise: from the bench top to the clinic. Hear Res 226(1–2):114–125

    Article  PubMed  Google Scholar 

  • Kujawa SG, Liberman MC (2009) Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J Neurosci 29:14077–14085

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kuroda S, Tsuchidate R, Smith ML, Maples KR, Siesjo BK (1999) Neuroprotective effects of a novel nitrone, NXY-059, after transient focal cerebral ischemia in the rat. J Cereb Blood Flow Metab 19:778–787

    Article  CAS  PubMed  Google Scholar 

  • Lamm K, Arnold W (2000) The effect of blood flow promoting drugs on cochlear blood flow, perilymphatic pO(2) and auditory function in the normal and noise-damaged hypoxic and ischemic guinea pig inner ear. Hear Res 141:199–219

    Article  CAS  PubMed  Google Scholar 

  • Lees KR, Sharma AK, Barer D, Ford GA, Kostulas V, Cheng YF, Odergren T (2001) Tolerability and pharmacokinetics of the nitrone NXY-059 in patients with acute stroke. Stroke 32:675–680

    Article  CAS  PubMed  Google Scholar 

  • Liberman MC, Dodds LW (1984) Single-neuron labeling and chronic cochlear pathology. III. Stereocilia damage and alterations of threshold tuning curves. Hear Res 16:55–74

    Article  CAS  PubMed  Google Scholar 

  • Lin CY, Wu JL, Shih TS, Tsai PJ, Sun YM, Ma MC, Guo YL (2010) N-Acetyl-cysteine against noise-induced temporary threshold shift in male workers. Hear Res 269(1–2):42–47

    Article  CAS  PubMed  Google Scholar 

  • Lin HW, Furman AC, Kujawa SG, Liberman MC (2011) Primary neural degeneration in the guinea pig cochlea after reversible noise-induced threshold shift. J Assoc Res Otolaryngol 12:605–616

    Article  PubMed Central  PubMed  Google Scholar 

  • Lindblad AC, Rosenhall1 U, Olofsson A, Hagerman B (2011) The efficacy of N-acetylcysteine to protect the human cochlea from subclinical hearing loss caused by impulse noise: a controlled trial. Noise Health November-December Volume 13:55, 392–401

    Google Scholar 

  • Lorito G, Giordano P, Petruccelli J, Martini A, Hatzopoulos S (2008) Different strategies in treating noiseinduced hearing loss with N-acetylcysteine. Med Sci Monit 14(8):BR159–BR164

    CAS  PubMed  Google Scholar 

  • Miller JM, Brown JN, Schacht J (2003) 8-Iso-prostaglandin F (2alpha), a product of noise exposure, reduces inner ear blood flow. Audiol Neurootol 8:207–221

    Article  CAS  PubMed  Google Scholar 

  • Morgan JI, Curran T (1991) Stimulus-transcription coupling in the nervous system: involvement of the inducible proto-oncogenes fos and jun. Annu Rev Neurosci 14:421–451

    Article  CAS  PubMed  Google Scholar 

  • Mortazavi S, Kashani MM, Khavanin A, Alameh A, Mirzaee R, Akbari M (2010) Effects of N-acetylcysteine on auditory brainstem response threshold shift in rabbits exposed to noise and carbon monoxide. Am J Applied Sci 7(2):201–207

    Article  CAS  Google Scholar 

  • Muller M (1991) Frequency representation in the rat cochlea. Hear Res 51:247–254

    Article  CAS  PubMed  Google Scholar 

  • Nagase S, Mukaida M, Miller JM, Altschuler RA (2003) Neonatal deafening causes changes in Fos protein induced by cochlear electrical stimulation. J Neurocytol 32(4):353–361

    Article  PubMed  Google Scholar 

  • NIDCD (2008) Noise induced hearing loss. National Institute on Deafness and Other Communication Disorders web. http://www.nidcd.nih.gov/health/hearing/pages/noise.aspx. Accessed 23 January 2013

  • Ohinata Y, Miller JM, Altschuler RA, Schacht J (2000a) Intense noise induces formation of vasoactive lipid peroxidation products in the cochlea. Brain Res 878:163–173

    Article  CAS  PubMed  Google Scholar 

  • Ohinata Y, Yamasoba T, Schacht J, Miller JM (2000b) Glutathione limits noise-induced hearing loss. Hear Res 146:28–34

    Article  CAS  PubMed  Google Scholar 

  • Ohinata Y, Miller JM, Schacht J (2003) Protection from noise-induced lipid peroxidation and hair cell loss in the cochlea. Brain Res 966:265–273

    Article  CAS  PubMed  Google Scholar 

  • Ohlemiller KK, McFadden SL, Ding DL, Lear PM, Ho YS (2000) Targeted mutation of the gene for cellular glutathione peroxidase (Gpx1) increases noise-induced hearing loss in mice. J Assoc Res Otolaryngol 1:243–254

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Olucha FE, Molina Mira A, Valenzuela Méndez C, Valverde Navarro AA, Martínez Soriano F (1997) Activation of proto-oncogene c-fos in the auditory tract of rats stimulated with wide-band noise. Acta Otorrinolaringol Esp 48(2):85–92

    CAS  PubMed  Google Scholar 

  • Otani L, Ogawa S, Zhao Z, Nakazawa K, Umehara S, Yoshimura E, Chang SJ, Kato H (2011) Optimized method for determining free L-cysteine in rat plasma by high-performance liquid chromatography with the 4-aminosulfonyl-7-fluoro-2,1,3-benzoxadiazole conversion reagent. Biosci Biotechnol Biochem 75:2119–2124

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Academic Press, New York

    Google Scholar 

  • Pirvola U, Xing-Qun L, Virkkala J, Saarma M, Murakata C, Camoratto AM, Walton KM, Ylikoski J (2000) Rescue of hearing, auditory hair cells, and neurons by CEP-1347/KT7515, an inhibitor of c-Jun N-terminal kinase activation. J Neurosci 20(1):43–50

    CAS  PubMed  Google Scholar 

  • Puel JL, D’Aldin CG, Saffiende S, Eybalin M, Pujol R (1996) Excitotoxicity and plasticity of IHC-auditory nerve contributes to both temporary and permanent threshold shift. In: Axelsson A, Borchgrevink HM, Hamernik RP, Hellstrom P-A, Henderson D, Salvi RJ (eds) Scientific basis of noise-induced hearing loss. Thieme, New York, pp 36–42

    Google Scholar 

  • Puel JL, Ruel J, Gervais D’Aldin C, Pujol R (1998) Excitotoxicity and repair of cochlear synapses after noise trauma induced hearing loss. Neuroreport 9:2109–2114

    Article  CAS  PubMed  Google Scholar 

  • Rouiller EM, Wan XS, Moret V, Liang F (1992) Mapping of c-fos expression elicited by pure tones stimulation in the auditory pathways of the rat, with emphasis on the cochlear nucleus. Neurosci Lett 144(1–2):19–24

    Article  CAS  PubMed  Google Scholar 

  • Saint Marie RL, Luo L, Ryan AF (1999) Effects of stimulus frequency and intensity on c-fos mRNA expression in the adult rat auditory brainstem. J Comp Neurol 404(2):258–270

    Article  CAS  PubMed  Google Scholar 

  • Säljö A, Bao F, Shi J, Hamberger A, Hansson HA, Haglid KG (2002) Expression of c-Fos and c-Myc and deposition of beta-APP in neurons in the adult rat brain as a result of exposure to short-lasting impulse noise. J Neurotrauma Mar 19(3):379–385

    Article  Google Scholar 

  • Sato K, Houtani T, Ueyama T, Ikeda M, Yamashita T, Kumazawa T, Sugimoto T (1993) Identification of rat brainstem sites with neuronal Fos protein induced by acoustic stimulation with pure tones. Acta Otolaryngol Suppl 500:18–22

    Article  CAS  PubMed  Google Scholar 

  • Saunders JC, Dear SP, Schneider ME (1985) The anatomical consequences of acoustic injury: a review and tutorial. J Acoust Soc Am 78:833–860

    Article  CAS  PubMed  Google Scholar 

  • Seidman MD, Shivapuja BG, Quirk WS (1993) The protective effects of allopurinol and superoxide dismutase on noise-induced cochlear damage. Otolaryngolog Head Neck Surg 109:1052–1056

    CAS  Google Scholar 

  • Shore SE, Koehler S, Oldakowski M, Hughes LF, Syed S (2008) Dorsal cochlear nucleus responses to somatosensory stimulation are enhanced after noise-induced hearing loss. Eur J Neurosci 27(1):155–168

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stipanuk MH, Dominy JE Jr, Lee JI, Coloso RM (2006) Mammalian cysteine metabolism: new insights into regulation of cysteine metabolism. J Nutr 136(6 Suppl):1652S–1659S

    CAS  PubMed  Google Scholar 

  • Sydserff SG, Borelli AR, Green AR, Cross AJ (2002) Effect of NXY-059 on infarct volume after transient or permanent middle cerebral artery occlusion in the rat; studies on dose, plasma concentration and therapeutic time window. Br J Pharmacol 135:103–112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Van Campen LE, Murphy WJ, Franks JR, Mathias PI, Toraason MA (2002) Oxidative DNA damage is associated with intense noise exposure in the rat. Hear Res 164:29–38

    Article  PubMed  Google Scholar 

  • Wallhäusser-Franke E (1997) Salicylate evokes c-fos expression in the brain stem: implications for tinnitus. Neuroreport 8:725–728

    Article  PubMed  Google Scholar 

  • Wang Y, Hirose K, Liberman MC (2002) Dynamics of noise-induced cellular injury and repair in the mouse cochlea. J Assoc Res Otolaryngol 3:248–268

    Article  PubMed Central  PubMed  Google Scholar 

  • Yamashita D, Jiang HY, Schacht J, Miller JM (2004) Delayed production of free radicals following noise exposure. Brain Res 1019:201–209

    Article  CAS  PubMed  Google Scholar 

  • Yamasoba T, Schacht J, Shoji F, Miller JM (1999) Attenuation of cochlear damage from noise trauma by an iron chelator, a free radical scavenger and glial cell line-derived neurotrophic factor in vivo. Brain Res 815:317–325

    Article  CAS  PubMed  Google Scholar 

  • Yao WB, Zhao YQ, Abe T, Ohta J, Ubuka T (1994) Effect of N-acetylcysteine administration on cysteine and glutathione contents in liver and kidney and in perfused liver of intact and diethyl maleate-treated rats. Amino Acids 3:255–266

    Article  Google Scholar 

  • Zeng C, Nannapaneni N, Zhou J, Hughes LF, Shore S (2009) Cochlear damage changes the distribution of vesicular glutamate transporters associated with auditory and nonauditory inputs to the cochlear nucleus. J Neurosci 29:4210–4217

    Article  CAS  PubMed  Google Scholar 

  • Zhang JS, Kaltenbach JA, Wang J, Kim SA (2003) Fos-like immunoreactivity in auditory and nonauditory brain structures of hamsters previously exposed to intense sound. Exp Brain Res 153:655–660

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors appreciate the efforts of Weihua Cheng for her outstanding technical assistance and would like to extend our appreciation to Dr. Marie H. Hanigan (OUHSC) for her assistance with TAC experiments. This research was supported by grant N00014-09-1-0999 from the US Department of the Navy, Office of Naval Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard D Kopke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, J., Li, W., Du, X. et al. Antioxidants Reduce Cellular and Functional Changes Induced by Intense Noise in the Inner Ear and Cochlear Nucleus. JARO 15, 353–372 (2014). https://doi.org/10.1007/s10162-014-0441-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-014-0441-4

Keywords

Navigation