Skip to main content

Advertisement

Log in

Conductive Hearing Loss Induced by Experimental Middle-Ear Effusion in a Chinchilla Model Reveals Impaired Tympanic Membrane-Coupled Ossicular Chain Movement

  • Research Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

An Erratum to this article was published on 01 June 2013

Abstract

Otitis media with effusion (OME) occurs when fluid collects in the middle-ear space behind the tympanic membrane (TM). As a result of this effusion, sounds can become attenuated by as much as 30–40 dB, causing a conductive hearing loss (CHL). However, the exact mechanical cause of the hearing loss remains unclear. Possible causes can include altered compliance of the TM, inefficient movement of the ossicular chain, decreased compliance of the oval window-stapes footplate complex, or altered input to the oval and round window due to conduction of sound energy through middle-ear fluid. Here, we studied the contribution of TM motion and umbo velocity to a CHL caused by middle-ear effusion. Using the chinchilla as an animal model, umbo velocity (V U) and cochlear microphonic (CM) responses were measured simultaneously using sinusoidal tone pip stimuli (125 Hz–12 kHz) before and after filling the middle ear with different volumes (0.5–2.0 mL) of silicone oil (viscosity, 3.5 Poise). Concurrent increases in CM thresholds and decreases in umbo velocity were noted after the middle ear was filled with 1.0 mL or more of fluid. Across animals, completely filling the middle ear with fluid caused 20–40-dB increases in CM thresholds and 15–35-dB attenuations in umbo velocity. Clinic-standard 226-Hz tympanometry was insensitive to fluid-associated changes in CM thresholds until virtually the entire middle-ear cavity had been filled (approximately >1.5 mL). The changes in umbo velocity, CM thresholds, and tympanometry due to experimentally induced OME suggest CHL arises primarily as a result of impaired TM mobility and TM-coupled umbo motion plus additional mechanisms within the middle ear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  • Bennett MJ, Weatherby LA (1982) Newborn acoustic reflexes to noise and pure-tone signals. J Speech Hear Res 25:383–387

    PubMed  CAS  Google Scholar 

  • Bluestone CD, Klein JO (eds) (1995) Definitions, terminology, and classification. In: Otitis media in infants and children, 2nd edn. W.B. Saunders Co., Philadelphia p 1–3

  • Bluestone CD, Beery QC, Paradise JL (1973) Audiometry and tympanometry in relation to middle ear effusions in children. Laryngoscope 83:594–604

    Article  PubMed  CAS  Google Scholar 

  • Brown DT, Marsh RR, Potsic WP (1983) Hearing loss induced by viscous fluids in the middle ear. Int J Pediatr Otorhinolaryngol 5:39–46

    Article  PubMed  CAS  Google Scholar 

  • Browning GC, Granich M (1978) Surgical anatomy of the temporal bone in the chinchilla. Ann Otol Rhinol Laryngol 87:875–882

    PubMed  CAS  Google Scholar 

  • Calandruccio L, Fitzgerald TS, Prieve BA (2006) Normative multifrequency tympanometry in infants and toddlers. J Am Acad Audiol 17:470–480

    Article  PubMed  Google Scholar 

  • Dai C, Gan RZ (2008) Change of middle ear transfer function in otitis media with effusion model of guinea pigs. 243:78–86

  • Dallos P (1973) The auditory periphery: biophysics and physiology. Academic Press, New York

    Google Scholar 

  • Ellison JC, Gorga M, Cohn E, Fitzpatrick D, Sanford CA, Keefe DH (2012) Wideband acoustic transfer functions predict middle-ear effusion. Laryngoscope 122:887–894

    Article  PubMed  Google Scholar 

  • Feeney MP, Grant IL, Marryott LP (2003) Wideband energy reflectance measurements in adults with middle-ear disorders. J Speech Lang Hear Res 46:901–911

    Article  PubMed  Google Scholar 

  • Gan RZ, Dai C, Wood MW (2006) Laser interferometry measurements of middle ear fluid and pressure effects on sound transmission. J Acoust Soc Am 120:3799–3810

    Article  PubMed  Google Scholar 

  • Goodhill V, Holcomb AL (1958) The relation of auditory response to the viscosity of tympanic fluids. Acta Otolaryngol 49:38–46

    Article  PubMed  CAS  Google Scholar 

  • Guan X, Gan RZ (2011) Effect of middle ear fluid on sound transmission and auditory brainstem response in guinea pigs. Hear Res 277:96–106

    Article  PubMed  Google Scholar 

  • Hall JW, Chandler DW (1994) Clinical tympanometry. In: Katz J, Ruth R (eds) Handbook of clinical audiology, 4th edn. Williams and Wilkins, Baltimore

    Google Scholar 

  • Hall JW, Derlacki EL (1986) Effect of conductive hearing loss and middle ear surgery on binaural hearing. Ann Otol Rhinol Laryngol 95:525–530

    PubMed  Google Scholar 

  • Hall JW, Grose JH, Dev MB, Ghiassi S (1998) The effect of masker interaural time delay on the masking level difference in children with history of normal hearing or history of otitis media with effusion. Ear Hear 19:220–229

    Google Scholar 

  • Hartley DEH, Moore DR (2003) Effects of conductive hearing loss on temporal aspects of sound transmission through the ear. Hear Res 177:53–60

    Article  PubMed  Google Scholar 

  • Heffner RS, Heffner HE (1991) Behavioral hearing range of the chinchilla. Hear Res 52:13–16

    Article  PubMed  CAS  Google Scholar 

  • Himmelfarb MZ, Popelka GR, Shanon E (1979) Tympanometry in normal neonates. J Speech Hear Res 22:179–191

    Google Scholar 

  • Hogan SC, Moore DR (2003) Impaired binaural hearing in children produces by a threshold level of middle ear disease. J Assoc Res Otolaryngol 4(2):123–129

    Article  PubMed  Google Scholar 

  • Holte L, Margolis RH, Cavanagh RM (1991) Developmental changes in multifrequency tympanograms. Audiology 30:1–24

    Article  PubMed  CAS  Google Scholar 

  • Jerger JF (1970) Clinical experience with impedance audiometry. Arch Otolaryngol 92:311–324

    Article  PubMed  CAS  Google Scholar 

  • Jerger J, Anthony L, Jerger S, Mauldin L (1974) Studies in impedance audiometry. 3. Middle ear disorders. Arch Otolaryngol 99:165–171

    Article  PubMed  CAS  Google Scholar 

  • Jeselsohn Y, Freeman S, Segal N, Sohmer H (2005) Quantitative experimental assessment of the factors contributing to hearing loss in serous otitis media. Otol Neurotol 26:1011–1015

    Article  PubMed  Google Scholar 

  • Joint Committee on Infant Hearing (2007) Position statement: principles and guidelines for early hearing detection and intervention programs. Pediatrics 120:898–921

    Article  Google Scholar 

  • Keefe DH, Simmons JL (2003) Energy transmittance predicts conductive hearing loss in older children and adults. J Acoust Soc Am 114:3217–3238

    Article  PubMed  Google Scholar 

  • Keith RW (1975) Middle ear function in neonates. Arch Otolaryngol 101:376–379

    Article  PubMed  CAS  Google Scholar 

  • Knudsen EI, Esterly SD, Knudsen PF (1984) Monaural occlusion alters sound localization during a sensitive period in the barn owl. J Neurosci 4:1001–1011

    PubMed  CAS  Google Scholar 

  • Kokko E (1974) Chronic secretory otitis media in children: a clinical study. Acta Otolaryngol Suppl 327:1–44

    PubMed  CAS  Google Scholar 

  • Lai D, Li W, Xian J, Liu S (2008) Multifrequency tympanometry in adults with otitis media with effusion. Eur Arch Otorhinolaryngol 265:1021–1025

    Article  PubMed  Google Scholar 

  • Lupo JE, Koka K, Thornton JL, Tollin DJ (2011) The effects of experimentally induced conductive hearing loss on spectral and temporal aspects of sound transmission through the ear. Hear Res 272:30–41

    Article  Google Scholar 

  • Marchant CD, McMillan PM, Shurin PA, Johnson CE, Turczyk VA, Feinstein JC, Panek DM (1986) Diagnosis of otitis media in early infancy by tympanometry and ipsilateral acoustic reflex thresholds. J Pediatr 109:590–595

    Article  PubMed  CAS  Google Scholar 

  • Margolis RH, Popelka GR (1975) Static and dynamic acoustic impedance measurements in infant ears. J Speech Hear Res 18:435–453

    PubMed  CAS  Google Scholar 

  • Margolis RH, Schachem PL, Hunter LL, Sutherland C (1995) Multifrequency tympanometry in chinchillas. Audiology 34:232–247

    Article  PubMed  CAS  Google Scholar 

  • Margolis RH, Schachern PA, Fulton S (1998) Multifrequency tympanometry and histopathology in chinchillas with experimentally-produced middle-ear pathologies. Acta Otolaryngol 118:216–225

    Article  PubMed  CAS  Google Scholar 

  • Marsh RR, Baranak CC, Potsic WP (1985) Hearing loss and visco-elasticity of middle ear fluid. Int J Pediatr Otorhinolaryngol 9:115–20

    Google Scholar 

  • Miller JD (1970) Audibility curve of the chinchilla. J Acoust Soc Am 48:513–523

    Article  PubMed  CAS  Google Scholar 

  • Molvaer O, Vallersnes F, Kringelbotn M (1978) The size of the middle and the mastoid air cell. Acta Otolaryngol 111:10–16

    Google Scholar 

  • Moore DR, Hutchings ME, Meyer SE (1991) Binaural masking level differences in children with a history of otitis media. Audiology 30:91–101

    Article  PubMed  CAS  Google Scholar 

  • Moore DR, Hartley DE, Hogan SC (2003) Effects of otitis media with effusion (OME) on central auditory function. Int J Pediatr Otorhinolaryngol 67(Suppl 1):S63–S67

    Article  PubMed  Google Scholar 

  • Nakajima HH, Pisano DV, Roosli C, Hamade MA, Merchant GR, Mahfoud L, Halpin CF, Rosowski JJ, Merchant SN (2012) Comparison of ear-canal reflectance and umbo velocity in patients with conductive hearing loss: a preliminary study. Ear Hear 33:35–43

    Article  PubMed  Google Scholar 

  • Niemiec AJ, Yost WA, Shofner WP (1992) Behavioral measures of the frequency selectivity in the chinchilla. J Acoust Soc Am 92:2636–2649

    Article  PubMed  CAS  Google Scholar 

  • Ohashi Y, Nakai Y, Esaki Y, Ohno Y, Sugiura Y, Okamoto H (1991) Experimental otitis media with effusion induced by lipopolysaccharide from Klebsiella pneumoniae. Mucociliary pathology of the eustachian tube. Acta Otolaryngol Suppl 486:105–115

    Article  PubMed  CAS  Google Scholar 

  • Orchik DJ, Dunn JW, McNutt L (1978) Tympanometry as a predictor of middle ear effusion. Arch Otolaryngol 104:4–6

    Article  PubMed  CAS  Google Scholar 

  • Paradise JL, Smith CG, Bluestone CD (1976) Tympanometric detection of middle ear effusion in infants and young children. Pediatrics 58:198–210

    PubMed  CAS  Google Scholar 

  • Paradise JL, Rockette HE, Colburn DK et al (1997) Otitis media in 2253 Pittsburgh area infants: prevalence and risk factors during the first two years of life. Pediatrics 99:318–333

    Article  PubMed  CAS  Google Scholar 

  • Petrova P, Freeman S, Sohmer H (2006) The effects of positive and negative middle ear pressures on auditory thresholds. Otol Neurotol 27:734–738

    Article  PubMed  Google Scholar 

  • Pillsbury HC, Grose JH, Hall JW (1991) Otitis media with effusion in children: binaural hearing before and after corrective surgery. Arch Otolaryngol Head Neck Surg 117:718–723

    Article  PubMed  CAS  Google Scholar 

  • Piskorski P, Keefe DH, Simmons JL, Gorga MP (1999) Prediction of conductive hearing loss based on acoustic ear-canal response using a multivariate clinical decision theory. J Acoust Soc Am 105:1749–1764

    Article  PubMed  CAS  Google Scholar 

  • Purdy SC, Williams MJ (2000) High frequency tympanometry: a valid and reliable immittance test protocol for young infants? N Z Audiol Soc Bull 10:9–24

    Google Scholar 

  • Qin Z, Wood M, Rosowski JJ (2010) Measurement of conductive hearing loss in mice. Hear Res 263:93–103

    Article  PubMed  Google Scholar 

  • Ravicz ME, Rosowski JJ, Merchant SN (2004) Mechanisms of hearing loss resulting from middle-ear fluid. Hear Res 195:103–130

    Article  PubMed  Google Scholar 

  • Roberts JE, Rosenfeld RM, Zeisel SA (2004) Otitis media and speech and language: a meta-analysis of prospective studies. Pediatrics 113:E238–E248

    Article  PubMed  Google Scholar 

  • Rogers DJ, Boseley ME, Adams MT, Makowski RL, Hohman MH (2010) Prospective comparison of handheld pneumatic otoscopy, binocular microscopy, and tympanometry in identifying middle ear effusions in children. Int J Pediatr Otorhinolaryngol 74:1140–1143

    Article  PubMed  Google Scholar 

  • Rosowski JJ, Ravicz ME, Songer JE (2006) Structures that contribute to middle-ear admittance in chinchilla. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 192:1287–311

    Google Scholar 

  • Thornton JL, Chevallier KM, Koka K, Lupo JE, Tollin DJ (2012) The conductive hearing loss due to an experimentally-induced middle ear effusion alters the interaural level and time differences cues to location. J Assoc Res Otolaryngol 13:641–654

    Google Scholar 

  • Turcanu D, Dalhoff E, Muller M, Zenner HP, Gummer AW (2009) Accuracy of velocity distortion product otoacoustic emissions for estimating mechanically based hearing loss. Hear Res 251:17–28

    Article  PubMed  Google Scholar 

  • Van Camp KJ, Margolis RH, Wilson RH, Creten WL, Shanks JE (1986) Principles of tympanometry. ASHA Press, Rockville

    Google Scholar 

  • Vrettakos PA, Dear SP, Saunders JC (1988) Middle ear structure in the chinchilla: a qualitative study. Am J Otolaryngol 9:58–67

    Article  PubMed  CAS  Google Scholar 

  • Wever EG, Lawrence M (1954) Physiological acoustics. Princeton University Press, Princeton

    Google Scholar 

  • Whitton JP, Polley DB (2011) Evaluating the perceptual and pathophysiological consequences of auditory deprivation in early postnatal life: a comparison of basic and clinical studies. J Assoc Res Otol 12:535–546

    Google Scholar 

  • Wiederhold ML, Zajtchuk JT, Vap JG, Paggi RE (1980) Hearing loss in relation to physical properties of middle ear effusions. Ann Otol Rhinol Laryngol 89:185–189

    CAS  Google Scholar 

  • Williams MJ, Purdy SC, Barber C (1995) High frequency probe tone tympanometry in infants with middle ear effusions. Austr J Otolaryngol 2:169–173

    Google Scholar 

  • Zwislocki J (1962) Analysis of the middle-ear function. I. Input impedance. J Acoust Soc Am 34:1514–1523

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Deafness and Other Communicative Disorders (NIDCD) grant F31-DC011198, T32-NS007083, and T32-HD041697 to JLT and NIDCD R01-DC011555 to DJT. Support for the initial phases of this work was provided by the National Organization for Hearing Research (NOHR) Evie and Ron Krancer Grant in Auditory Science to DJT. We thank Drs. Eric Lupo and Kristin Uhler for their helpful comments about the experiments and manuscript and Kelsey Anbuhl and Alex Harbison for construction of Figure 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Tollin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thornton, J.L., Chevallier, K.M., Koka, K. et al. Conductive Hearing Loss Induced by Experimental Middle-Ear Effusion in a Chinchilla Model Reveals Impaired Tympanic Membrane-Coupled Ossicular Chain Movement. JARO 14, 451–464 (2013). https://doi.org/10.1007/s10162-013-0388-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-013-0388-x

Keywords

Navigation