Skip to main content
Log in

Maturation and Aging of the Human Cochlea: A View through the DPOAE Looking Glass

  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

Cochlear function changes throughout the human lifespan. Distortion product otoacoustic emissions (DPOAEs) were recorded in 156 ears to examine these changes and speculate as to their mechanistic underpinnings. DPOAEs were analyzed within the context of current OAE generation theory, which recognizes distinct emission mechanisms. Seven age groups including premature newborns through senescent adults were tested with a swept-tone DPOAE protocol to examine magnitude and phase features of both the mixed DPOAE and individual distortion and reflection components. Results indicate (1) 6–8-month-old infants have the most robust DPOAE and component levels for frequencies >1.5 kHz; (2) older adults show a substantial reduction in DPOAE and distortion-component levels combined with a smaller drop in reflection-component levels; (3) all age groups manifest a violation of distortion phase invariance at frequencies below 1.5 kHz consistent with a secular break in cochlear scaling; the apical phase delay is markedly longer in newborns; and (4) phase slope of reflection emissions is most shallow in the older adults. Combined findings suggest that basilar membrane motion in the apical half of the cochlea is immature at birth and that the cochlea of senescent adults shows reduced nonlinearity and relatively shallow reflection-component phase slope, which can be interpreted to suggest degraded tuning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12

Similar content being viewed by others

References

  • Abdala C (1996) Distortion product otoacoustic emission (2f 1f 2) amplitude as a function of f 2/f 1 frequency ratio and primary tone level separation in human adults and neonates. J Acoust Soc Am 100:3726–3740

    Article  PubMed  CAS  Google Scholar 

  • Abdala C (1998) A developmental study of distortion product otoacoustic emission (2f1–f2) suppression in humans. Hear Res 121:125–138

    Article  PubMed  CAS  Google Scholar 

  • Abdala C (2000) Distortion product otoacoustic emission (2f1–f2) amplitude growth in human adults and neonates. J Acoust Soc Am 107:446–456

    Article  PubMed  CAS  Google Scholar 

  • Abdala C, Dhar S (2010) DPOAE phase and component analysis in human newborns. J Acoust Soc Am 127:316–325

    Article  PubMed  Google Scholar 

  • Abdala C, Keefe D (2006) Effects of middle-ear immaturity on DPOAE suppression tuning in infant ears. J Acoust Soc Am 120:3832–3842

    Article  PubMed  Google Scholar 

  • Abdala C, Keefe D, Oba S (2007) Distortion product otoacoustic emission suppression tuning and acoustic admittance in human infants: birth through six months. J Acoust Soc Am 121:3617–3627

    Article  PubMed  Google Scholar 

  • Abdala C, Mishra SK, Williams TL (2009) Considering distortion product otoacoustic emission fine structure in measurements of the medial olivocochlear reflex. J Acoust Soc Am 125:1584–1594

    Article  PubMed  Google Scholar 

  • Abdala C, Dhar S, Kalluri R (2011a) Level dependence of distortion product otoacoustic emission phase is attributed to component mixing. J Acoust Soc Am 129:3123–3133

    Article  PubMed  Google Scholar 

  • Abdala C, Dhar S, Mishra S (2011b) The breaking of cochlear scaling symmetry in human newborns and adults. J Acoust Soc Am 129:1584–1594

    Google Scholar 

  • Bentsen T, Harte M, Dau T (2011) Human cochlear tuning estimates from stimulus-frequency otoacoustic emissions. J Acoust Soc Am 129:3797–3807

    Article  PubMed  Google Scholar 

  • Bonfils P, Uziel A, Narcy P (1989) The properties of spontaneous and evoked otoacoustic emissions in neonates and children: a preliminary report. Arch Otorhinolaryngol 246:249–251

    Article  PubMed  CAS  Google Scholar 

  • Brown D, Kimberley B, Eggermont J (1994) Cochlear traveling-wave delays estimated by distortion-product emissions in normal hearing adults and term-born neonates. J Otolaryngol 23:234–238

    PubMed  CAS  Google Scholar 

  • Brown AM, Sheppard SL, Russell PT (1995) Differences between neonatea and adult cochlear mechanical responses. Auditory Neurosci 1:169–181

    Google Scholar 

  • Burns EM, Arehart KH, Campbell SL (1992) Prevalence of spontaneous otoacoustic emissions in neonates. J Acoust Soc Am 91:1571–1575

    Article  PubMed  CAS  Google Scholar 

  • Cleveland WS (1993) Visualizing data. Hobart, Summit, pp 88–101

    Google Scholar 

  • Collet L, Gartner M, Moulin A, Kauffmann I, Disant F, Morgon A (1989) Evoked otoacoustic emissions and sensorineural hearing loss. Arch Otolaryngol Head Neck Surg 115:1060–1062

    Article  PubMed  CAS  Google Scholar 

  • Cooper N, Rhode W (1995) Nonlinear mechanisms at the apex of the guinea pig cochlea. Hear Res 82:225–243

    Article  PubMed  CAS  Google Scholar 

  • Cruickshanks KJ, Wiley TL, Tweed TS, Klein BE, Klein R, Mares-Perlman JA, Nondahl DM (1998) Prevalence of hearing loss in older adults in Beaver Dam, Wisconsin. The epidemiology of hearing loss study. Am J Epidemiol 148:879–886

    Article  PubMed  CAS  Google Scholar 

  • Deeter R, Abel R, Calandruccio L, Dhar S (2009) Contralateral acoustic stimulation alters the magnitude and phase of distortion product otoacoustic emissions. J Acoust Soc Am 126:2413–2424

    Article  PubMed  Google Scholar 

  • Dhar S, Abdala C (2007) A comparative study of distortion-product-emission fine structure in human newborns and adults with normal hearing. J Acoust Soc Am 122:2191–2202

    Article  PubMed  Google Scholar 

  • Dhar S, Long GR, Talmadge CL, Tubis A (2005) The effect of stimulus-frequency ratio on distortion product otoacoustic emission components. J Acoust Soc Am 117:3766–3776

    Article  PubMed  Google Scholar 

  • Dhar S, Rogers A, Abdala C (2011) Breaking away: violation of distortion emission phase-frequency invariance at low frequencies. J Acoust Soc Am 129:3115–3122

    Article  PubMed  Google Scholar 

  • Dong W, Olson ES (2010) Local cochlear damage reduces local nonlinearity and decreases generator-type cochlear emissions while increasing reflector-type emissions. J Acoust Soc Am 127:1422–1431

    Article  PubMed  Google Scholar 

  • Dorn PA, Piskorski P, Keefe DH, Neely ST, Gorga MP (1998) On the existence of an age/threshold/frequency interaction in distortion product otoacoustic emissions. J Acoust Soc Am 104:964–971

    Article  PubMed  CAS  Google Scholar 

  • Engdahl B, Kemp DT (1996) The effect of noise exposure on the details of distortion product otoacoustic emissions in humans. J Acoust Soc Am 99:1573–1587

    Article  PubMed  CAS  Google Scholar 

  • Gordon-Salant S (2005) Hearing loss and aging: new research findings and clinical implications. J Rehabil Res Dev 42(4 Suppl 2):9–24

    Article  PubMed  Google Scholar 

  • Greenwood DD (1990) A cochlear frequency-position function for several species -29 years later. J Acoust Soc Am 87:2592–2605

    Article  PubMed  CAS  Google Scholar 

  • Grose JH, Hall JW III, Buss E (2006) Temporal processing deficits in the pre-senescent auditory system. J Acoust Soc Am 119:2305–2315

    Article  PubMed  Google Scholar 

  • Harris KC, Ecker MA, Ahlstrom JB, Dubno JR (2010) Age-related differences in gap detection: effects of task difficulty and cognitive ability. Hear Res 264:21–29

    Article  PubMed  Google Scholar 

  • He NA, Schmiedt RA (1996) Effects of aging on fine structure of the 2f1-f2 acoustic distortion product. J Acoust Soc Am 99:1002–1015

    Article  PubMed  CAS  Google Scholar 

  • Henin S, Thompson S, Abdelrazeq S, Long GR (2011) Changes in amplitude and phase of distortion-product otoacoustic emission fine-structure and separated components during efferent activation. J Acoust Soc Am 129:2068–2079

    Article  PubMed  Google Scholar 

  • Hoth S, Gucmundsdottir K, Plinkert P (2010) Age dependence of otoacoustic emissions: the loss of amplitude is primarily caused by age-related hearing loss and not aging alone. Eur Arch Otorhinolaryngol 267:679–690

    Article  PubMed  Google Scholar 

  • Kalluri R, Shera CA (2001) Distortion-product source unmixing: a test of the two-mechanism model for DPOAE generation. J Acoust Soc Am 109:622–637

    Article  PubMed  CAS  Google Scholar 

  • Kalluri R, Shera CA (2007) Near equivalence of human click-evoked and stimulus frequency otoacoustic emissions. J Acoust Soc Am 121:2097–2110

    Article  PubMed  Google Scholar 

  • Kalluri R, Abdala C, Mishra S, Gharibian L (2011) Stimulus-frequency otoacoustic emissions in human newborns. In Poster Presented to the Thirty-Fourth Annual Midwinter Research Meeting of the Association for Research in Otolaryngology, Baltimore, No. 369, pp. 121–122

  • Keefe DH, Abdala C (2007) Theory of forward and reverse middle-ear transmission applied to otoacoustic emissions in infant and adult ears. J Acoust Soc Am 121:978–993

    Article  PubMed  Google Scholar 

  • Keefe DH, Abdala C (2011) Distortion-product otoacoustic-emission suppression tuning in human infants and adults using absorbed sound power. J Acoust Soc Am 129:EL108–EL113

    Article  PubMed  Google Scholar 

  • Kimberley BP, Brown DK, Eggermont JJ (1993) Measuring human cochlear traveling wave delay using distortion product emission phase responses. J Acoust Soc Am 94:1343–1350

    Article  PubMed  CAS  Google Scholar 

  • Knight RD, Kemp DT (2000) Indications of different distortion product otoacoustic emission mechanisms from a detailed f1, f2 area study. J Acoust Soc Am 107:457–473

    Article  PubMed  CAS  Google Scholar 

  • Knight RD, Kemp DT (2001) Wave and place fixed DPOAE maps of the human ear. J Acoust Soc Am 109:1513–1525

    Article  PubMed  CAS  Google Scholar 

  • Kuroda T (2007) Clinical investigation on spontaneous otoacoustic emission (SOAE) in 447 ears. Auris Nasus Larynx 34:29–38

    Article  PubMed  Google Scholar 

  • Lang H, Jyothi V, Smythe NM, Dubno JR, Schulte BA, Schmiedt RA (2010) Chronic reduction of endocochlear potential reduces auditory nerve activity: further confirmation of an animal model of metabolic presbyacusis. J Assoc Res Otolaryngol 11:419–434

    Article  PubMed  Google Scholar 

  • Lasky RE, Perlman J, Hecox K (1992) Distortion-product otoacoustic emissions in human newborns and adults. Ear Hear 13:430–441

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Dhar S, Abel R, Banakis R, Grolley E, Lee J, Zecker S, Siegel JH (2012) Behavioral hearing thresholds between 0.125 and 20 kHz using depth-compensated ear simulator calibration. Ear Hear, Mar 20 [Epub ahead of print]

  • Long GR, Talmadge CL, Lee J (2008) Measuring distortion product otoacoustic emissions using continuously sweeping primaries. J Acoust Soc Am 124:1613–1626

    Article  PubMed  Google Scholar 

  • Lonsbury-Martin BL, Cutler WM, Martin GK (1991) Evidence for the influence of aging on distortion-product otoacoustic emissions in humans. J Acoust Soc Am 89:1749–1759

    Article  PubMed  CAS  Google Scholar 

  • Makary CA, Shin J, Kujawa SG, Liberman MC, Merchant SN (2011) Age-related primary cochlear neuronal degeneration in human temporal bones. J Assoc Res Otolaryngol 12:711–717

    Article  PubMed  Google Scholar 

  • Martin GK, Stagner BB, Fahey PF, Lonsbury-Martin BL (2009) Steep and shallow phase gradient distortion product otoacoustic emissions arising basal to the primary tones. J Acoust Soc Am 125:EL 85–EL 92

    Google Scholar 

  • Mauermann M, Kollmeier B (2004) Distortion product otoacoustic emission (DPOAE) input/output functions and the influence of the second DPOAE source. J Acoust Soc Am 116:2199–2212

    Article  PubMed  Google Scholar 

  • Mills DM, Schmiedt RA (2004) Metabolic presbycusis: differential changes in auditory brainstem and otoacoustic emission responses with chronic furosemide application in the gerbil. J Assoc Res Otolaryngol 5:1–10

    Article  PubMed  Google Scholar 

  • Morlet T, Lapillonne A, Ferber C, Duclaux R, Sann L, Putet G, Salle B, Collet L (1995) Spontaneous otoacoustic emissions in preterm neonates: prevalence and gender effects. Hear Res 90:44–54

    Article  PubMed  CAS  Google Scholar 

  • Norton SJ, Widen J (1990) Evoked otoacoustic emissions in normal-hearing infants and children: emerging data and issues. Ear Hear 11:121–127

    Article  PubMed  CAS  Google Scholar 

  • Oeken J, Lenk A, Bootz E (2000) Influence of age and presbycusis on DPOAE. Acta Otolaryngol 120:396–403

    Article  PubMed  CAS  Google Scholar 

  • Ohlemiller KK (2004) Age-related hearing loss: the status of Schuknecht's typology. Curr Opin Otolaryngol Head Neck Surg 12:439–443

    Article  PubMed  Google Scholar 

  • Prieve BA (1992) Otoacoustic emissions in infants and children: basic characteristics and clinical application. Semin Hear 13:37–52

    Article  Google Scholar 

  • Pujol R, Lavigne-Rebillard M, Lenoir M (1998) In: Rube E, Popper A, Fay R (eds) Development of sensory and neural structures in the mammalian cochlea, in development of the auditory system. Springer, New York, pp 146–192

    Google Scholar 

  • Puria S (2003) Measurements of human middle ear forward and reverse acoustics: implications for otoacoustic emissions. J Acoust Soc Am 113:2773–2789

    Article  PubMed  Google Scholar 

  • Rao A, Long GR (2011) Effects of aspirin on distortion product fine structure: interpreted by the two-source model for distortion product otoacoustic emissions generation. J Acoust Soc Am 129:792–800

    Article  PubMed  Google Scholar 

  • Rhode WS (1971) Observations of the vibration of the basilar membrane in squirrel monkeys using the Mossbauer technique. J Acoust Soc Am 49(Suppl 2):1218

    Article  PubMed  Google Scholar 

  • Ruggero MA, Rich NC (1991) Furosemide alters organ of corti mechanics: evidence for feedback of outer hair cells upon the basilar membrane. J Neurosci 11:1057–1067

    PubMed  CAS  Google Scholar 

  • Ruggero MA, Rich NC, Recio A (1996) The effect of intense acoustic stimulation on basilar-membrane vibration. Aud Neurosci 2:329–345

    Google Scholar 

  • Schairer KS, Ellison JC, Fitzpatrick D, Keefe DH (2006) Use of stimulus frequency otoacoustic emission latency and level to investigate cochlear mechanics in human ears. J Acoust Soc Am 120:901–914

    Article  PubMed  Google Scholar 

  • Schmiedt R, Lang H, Okamura H, Schulte B (2002) Effects of furosemide applied chronically to the round window: a model of metabolic presbycusis. J Neurosci 22:9643–9650

    PubMed  CAS  Google Scholar 

  • Schuknecht HF (1955) Presbycusis. Laryngoscope 65:402–419

    Article  PubMed  CAS  Google Scholar 

  • Shaffer LA, Dhar S (2006) DPOAE component estimates and their relationship to hearing thresholds. J Am Acad Audiol 17:279–292

    Article  PubMed  Google Scholar 

  • Shera CA, Guinan JJ Jr (1999) Evoked otoacoustic emissions arise by two fundamentally different mechanisms: a taxonomy for mammalian OAEs. J Acoust Soc Am 105:782–798

    Article  PubMed  CAS  Google Scholar 

  • Shera CA, Guinan JJ (2003) Stimulus frequency-emissions group delay: a test of coherent reflection filtering and a window on cochlear tuning. J Acoust Soc Am 113:2762–2772

    Article  PubMed  Google Scholar 

  • Shera CA, Talmadge CL, Tubis A (2000) Interrelations among distortion-product phase-gradient delays: their connection to scaling symmetry and its breaking. J Acoust Soc Am 108:2933–2948

    Article  PubMed  CAS  Google Scholar 

  • Shera CA, Guinan JJ, Oxenham AJ (2010) Otoacoustic estimation of cochlear tuning: validation in the chinchilla. J Assoc Res Otolaryngol 11:343–365

    Article  PubMed  Google Scholar 

  • Smurzynski J, Jung MD, Lafreniere D, Kim DO, Kamath MV, Rowe JC, Holman MC, Leonard G (1993) Distortion-product and click-evoked otoacoustic emissions of preterm and full-term infants. Ear Hear 14:258–274

    Article  PubMed  CAS  Google Scholar 

  • Stover L, Norton SJ (1993) The effects of aging on otoacoustic emissions. J Acoust Soc Am 94:2670–2681

    Article  PubMed  CAS  Google Scholar 

  • Strickland EA, Burns EM, Tubis A (1985) Incidence of spontaneous otoacoustic emissions in children and infants. J Acoust Soc Am 78:931–935

    Article  PubMed  CAS  Google Scholar 

  • Talmadge CL, Tubis A, Long GR, Piskorski P (1998) Modeling otoacoustic emission and hearing threshold fine structures. J Acoust Soc Am 104:1517–1543

    Article  PubMed  CAS  Google Scholar 

  • Talmadge CL, Long GR, Tubis A, Dhar S (1999) Experimental confirmation of the two-source interference model for the fine structure of distortion product otoacoustic emissions. J Acoust Soc Am 105:275–292

    Article  PubMed  CAS  Google Scholar 

  • Uchida Y, Ando F, Shimokata H, Sugiura S, Ueda H, Nakashima T (2008) The effects of aging on distortion product otoacoustic emissions in adults with normal hearing. Ear Hear 29:176–184

    Article  PubMed  Google Scholar 

  • Zweig G (1976) Basilar membrane motion. Cold Spring Harb Symp Quant Biol 40:619–633

    Article  PubMed  CAS  Google Scholar 

  • Zweig G, Shera CA (1995) The origin of periodicity in the spectrum of evoked otoacoustic emissions. J Acoust Soc Am 98:2018–2047

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health R01DC003552 and the House Research Institute. The authors would like to thank Srikanta Mishra, Shannon Luckovich (HRI), Angela Garinis (UW), Abigail Rogers, and Sumaya Sidique (NU) for data collection and Silvia Batezati, Laurel Fisher, and Ping Luo for assistance with data management. We appreciate helpful discussions with Bob Shannon and Chris Shera and thank Dr. Shera for his loess modeling script.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolina Abdala.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdala, C., Dhar, S. Maturation and Aging of the Human Cochlea: A View through the DPOAE Looking Glass. JARO 13, 403–421 (2012). https://doi.org/10.1007/s10162-012-0319-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-012-0319-2

Keywords

Navigation