Skip to main content

Advertisement

Log in

Hydrochlorothiazide ameliorates polyuria caused by tolvaptan treatment of polycystic kidney disease in PCK rats

  • Original article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

Tolvaptan is an effective treatment for polycystic kidney disease (PKD), but also causes unfortunate polyuria. Hydrochlorothiazide (HCTZ) has been shown to reduce urine volume in nephrogenic diabetes insipidus, raising the possibility that HCTZ could also be effective in reducing tolvaptan-induced polyuria. In this study, we examined the combined administration of HCTZ and tolvaptan.

Methods

Male PCK rats were divided into four groups of normal chow (Cont), normal chow plus tolvaptan, gavage HCTZ treatment, and tolvaptan + HCTZ. Biochemical examinations of the plasma and urine were performed as well as histological and molecular (mRNA and protein expression) analyses.

Results

Groups treated with tolvaptan had significantly higher 24 h urine excretion, which was significantly reduced in the tolvaptan + HCTZ group after 2 weeks. Cyst size, pERK protein expression, and Cyclin D1 mRNA expression were all significantly reduced in both the tolvaptan and tolvaptan + HCTZ groups, indicating that HCTZ did not affect the beneficial functions of tolvaptan. Notably, aquaporin 2 redistribution from the apical to intracellular domains was observed in tolvaptan-treated rats and was partially reversed in the tolvaptan + HCTZ group. The renal glomerular filtration rate was reduced in the tolvaptan + HCTZ group. Significantly lowered mRNA expression of neuronal nitric oxide synthase, prostaglandin E synthase 2 and renin were also found in the medulla, but not in the cortex.

Conclusion

HCTZ reduces tolvaptan-induced polyuria without altering its beneficial effects on PKD. This novel therapeutic combination could potentially lead to better PKD treatments and improved quality of life for the affected patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chapman AB, Devuyst O, Eckardt KU, et al. Autosomal-dominant polycystic kidney disease (ADPKD): executive summary from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference. Kidney Int. 2015;88(1):17–27.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Torres VE, Harris PC, Pirson Y. Autosomal dominant polycystic kidney disease. Lancet. 2007;369(9569):1287–301.

    Article  PubMed  Google Scholar 

  3. Martínez V, Comas J, Arcos E, et al. Renal replacement therapy in ADPKD patients: a 25-year survey based on the Catalan registry. BMC Nephrol. 2013;14:186.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Collins AJ, Foley RN, Herzog C, et al. US renal data system 2012 annual data report. Am J Kidney Dis. 2013;61(1 Suppl 1):A7 (e1–476).

    Article  PubMed  Google Scholar 

  5. Lager DJ, Qian Q, Bengal RJ, Ishibashi M, Torres VE. The pck rat: a new model that resembles human autosomal dominant polycystic kidney and liver disease. Kidney Int. 2001;59(1):126–36.

    Article  CAS  PubMed  Google Scholar 

  6. Torres VE, Chapman AB, Devuyst O, et al. Tolvaptan in patients with autosomal dominant polycystic kidney disease. N Engl J Med. 2012;367(25):2407–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Casteleijn NF, Messchendorp AL, Bae KT, et al. Polyuria due to vasopressin V2 receptor antagonism is not associated with increased ureter diameter in ADPKD patients. Clin Exp Nephrol. 2017;21(3):375–82.

    Article  CAS  PubMed  Google Scholar 

  8. Hora M, Reischig T, Hes O, Ferda J, Klecka J. Urological complications of congenital nephrogenic diabetes insipidus—long-term follow-up of one patient. Int Urol Nephrol. 2006;38(3–4):531–2.

    CAS  PubMed  Google Scholar 

  9. Higuchi A, Kawamura T, Nakai H, Hasegawa Y. Infrequent voiding in nephrogenic diabetes insipidus as a cause of renal failure. Pediatr Int. 2002;44(5):540–2.

    Article  PubMed  Google Scholar 

  10. Maroz N, Maroz U, Iqbal S, Aiyer R, Kambhampati G, Ejaz AA. Nonobstructive hydronephrosis due to social polydipsia: a case report. J Med Case Rep. 2012;6:376.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Singh H, Linas SL. Compulsive water drinking in the setting of anticholinergic drug use: an unrecognized cause of chronic renal failure. Am J Kidney Dis. 1995;26(4):586–9.

    Article  CAS  PubMed  Google Scholar 

  12. Crawford JD, Kennedy GC, Hill LE. Clinical results of treatment of diabetes insipidus with drugs of the chlorothiazide series. N Engl J Med. 1960;262:737–43.

    Article  CAS  PubMed  Google Scholar 

  13. Al nofal A, Lteif A. Thiazide diuretics in the management of young children with central diabetes insipidus. J Pediatr. 2015;167(3):658–61.

    Article  CAS  PubMed  Google Scholar 

  14. Forrest JN, Cohen AD, Torretti J, Himmelhoch JM, Epstein FH. On the mechanism of lithium-induced diabetes insipidus in man and the rat. J Clin Investig. 1974;53(4):1115–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang X, Gattone V II, Harris PC, Torres VE. Effectiveness of vasopressin V2 receptor antagonists OPC-31260 and OPC-41061 on polycystic kidney disease development in the PCK rat. J Am Soc Nephrol. 2005;16(4):846–51.

    Article  CAS  PubMed  Google Scholar 

  16. Salvetti A, Ghiadoni L. Thiazide diuretics in the treatment of hypertension: an update. J Am Soc Nephrol. 2006;17(4 Suppl 2):25–9.

    Article  CAS  Google Scholar 

  17. Nair AB, Jacob S. A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm. 2016;7(2):27–31.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Reungjui S, Roncal CA, Mu W, Srinivas TR, Sirivongs D, Johnson RJ, Nakagawa T. Thiazide diuretics exacerbate fructose-induced metabolic syndrome. J Am Soc Nephrol. 2007;18(10):2724–31.

    Article  CAS  PubMed  Google Scholar 

  19. Yamamoto J, Nishio S, Hattanda F, et al. Branched-chain amino acids enhance cyst development in autosomal dominant polycystic kidney disease. Kidney Int. 2017;92(2):377–87.

    Article  CAS  PubMed  Google Scholar 

  20. Gattone VH, Wang X, Harris PC, Torres VE. Inhibition of renal cystic disease development and progression by a vasopressin V2 receptor antagonist. Nat Med. 2003;9(10):1323–6.

    Article  CAS  PubMed  Google Scholar 

  21. Seo MY, Yang J, Lee JY, et al. Renal Klotho expression in patients with acute kidney injury is associated with the severity of the injury. Korean J Intern Med. 2015;30(4):489–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ando F, Sohara E, Morimoto T, Yui N, Nomura N, Kikuchi E, Takahashi D, Mori T, Vandewalle A, Rai T, Sasaki S, Kondo Y, Uchida S. Wnt5a induces renal AQP2 expression by activating calcineurin signalling pathway. Nat Commun. 2016;7:13636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hopp K, Wang X, Ye H, Irazabal MV, Harris PC, Torres VE. Effects of hydration in rats and mice with polycystic kidney disease. Am J Physiol Ren Physiol. 2015;308(3):F261–6.

    Article  CAS  Google Scholar 

  24. Sabbatini M, Russo L, Cappellaio F, et al. Effects of combined administration of rapamycin, tolvaptan, and AEZ-131 on the progression of polycystic disease in PCK rats. Am J Physiol Ren Physiol. 2014;306(10):F1243–50.

    Article  CAS  Google Scholar 

  25. Ando F, Sohara E, Morimoto T, et al. Wnt5a induces renal AQP2 expression by activating calcineurin signalling pathway. Nat Commun. 2016;7:13636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Whiting JL, Ogier L, Forbush KA, et al. AKAP220 manages apical actin networks that coordinate aquaporin-2 location and renal water reabsorption. Proc Natl Acad Sci USA. 2016;113(30):E4328–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. César KR, Magaldi AJ. Thiazide induces water absorption in the inner medullary collecting duct of normal and Brattleboro rats. Am J Physiol. 1999;277(5 Pt 2):F756–60.

    PubMed  Google Scholar 

  28. Earley LE, Orloff J. The Mechanism of antidiuresis associated with the administration of hydrochlorothiazide to patients with vasopressin-resistant diabetes insipidus. J Clin Investig. 1962;41(11):1988–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Torres VE, Harris PC. Strategies targeting cAMP signaling in the treatment of polycystic kidney disease. J Am Soc Nephrol. 2014;25(1):18–32.

    Article  CAS  PubMed  Google Scholar 

  30. Cohen JD, Tham KY, Mastrandrea NJ, Gallegos AC, Monks TJ, Lau SS. cAMP-dependent cytosolic mislocalization of p27(kip)-cyclin D1 during quinol-thioether-induced tuberous sclerosis renal cell carcinoma. Toxicol Sci. 2011;122(2):361–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cohen JD, Gard JM, Nagle RB, Dietrich JD, Monks TJ, Lau SS. ERK crosstalks with 4EBP1 to activate cyclin D1 translation during quinol-thioether-induced tuberous sclerosis renal cell carcinoma. Toxicol Sci. 2011;124(1):75–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sherr CJ. Cancer cell cycles. Science. 1996;274(5293):1672–7.

    Article  CAS  PubMed  Google Scholar 

  33. Zhao J, Li L, Wei S, et al. Clinicopathological and prognostic role of cyclin D1 in esophageal squamous cell carcinoma: a meta-analysis. Dis Esophagus. 2012;25(6):520–6.

    Article  CAS  PubMed  Google Scholar 

  34. Happé H, Peters DJ. Translational research in ADPKD: lessons from animal models. Nat Rev Nephrol. 2014;10(10):587–601.

    Article  CAS  PubMed  Google Scholar 

  35. Sinke AP, Kortenoeven ML, De Groot T, et al. Hydrochlorothiazide attenuates lithium-induced nephrogenic diabetes insipidus independently of the sodium-chloride cotransporter. Am J Physiol Ren Physiol. 2014;306(5):F525–33.

    Article  CAS  Google Scholar 

  36. Christensen BM, Marples D, Jensen UB, et al. Acute effects of vasopressin V2-receptor antagonist on kidney AQP2 expression and subcellular distribution. Am J Physiol. 1998;275(2 Pt 2):F285–97.

    CAS  PubMed  Google Scholar 

  37. Xu DL, Martin PY, Ohara M, et al. Upregulation of aquaporin-2 water channel expression in chronic heart failure rat. J Clin Investig. 1997;99(7):1500–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pavlov TS, Levchenko V, Ilatovskaya DV, Palygin O, Staruschenko A. Impaired epithelial Na+ channel activity contributes to cystogenesis and development of autosomal recessive polycystic kidney disease in PCK rats. Pediatr Res. 2015;77(1–1):64–9.

    Article  PubMed  Google Scholar 

  39. Wilcox CS, Welch WJ, Murad F, et al. Nitric oxide synthase in macula densa regulates glomerular capillary pressure. Proc Natl Acad Sci USA. 1992;89(24):11993–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Juncos LA, Garvin J, Carretero OA, Ito S. Flow modulates myogenic responses in isolated microperfused rabbit afferent arterioles via endothelium-derived nitric oxide. J Clin Investig. 1995;95(6):2741–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lorenz JN, Weihprecht H, Schnermann J, Skøtt O, Briggs JP. Renin release from isolated juxtaglomerular apparatus depends on macula densa chloride transport. Am J Physiol. 1991;260(4 Pt 2):F486–93.

    CAS  PubMed  Google Scholar 

  42. Peti-peterdi J, Komlosi P, Fuson AL, et al. Luminal NaCl delivery regulates basolateral PGE2 release from macula densa cells. J Clin Investig. 2003;112(1):76–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ernsberger P, Koletsky RJ. Metabolic effects of antihypertensive agents: role of sympathoadrenal and renin-angiotensin systems. Naunyn Schmiedebergs Arch Pharmacol. 2006;373(4):245–58.

    Article  CAS  PubMed  Google Scholar 

  44. Jessup JA, Brosnihan KB, Gallagher PE, Chappell MC, Ferrario CM. Differential effect of low dose thiazides on the renin angiotensin system in genetically hypertensive and normotensive rats. J Am Soc Hypertens. 2008;2(2):106–15.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Geibel J, Giebisch G, Boron WF. Angiotensin II stimulates both Na(+)-H+ exchange and Na+/HCO3 cotransport in the rabbit proximal tubule. Proc Natl Acad Sci USA. 1990;87(20):7917–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Biomedical Research Unit of Tohoku University Hospital and the Institute for Animal Experimentation Tohoku University Graduate School of Medicine as well as the Center of Research Instruments, Institute of Development, Aging and Cancer (IDAC), Tohoku University for the use of their equipment. We thank Ms. Yayoi Aoyama for technical assistance. This study was supported in part by Grants for Scientific Research (Japan Society for the Promotion of Science; 23659438, 25860156, 26670424, 15K18694, 15H04834, and 16H05312) from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT).

Author information

Authors and Affiliations

Authors

Contributions

AW, TH, and TM designed the study and wrote the initial draft of the manuscript. TM and SI supervised the project. AW, YO, and CT performed the animal experiments. AW, TH, CT, ES, IO-Y, SK, and YM contributed to the analysis and interpretation of data. All authors critically reviewed the manuscript and approved the final version.

Corresponding author

Correspondence to Takefumi Mori.

Ethics declarations

Conflict of interest

T.M. and S.I. are consultants for a clinical trial being conducted by Otsuka Pharmaceutical. T.M. has also received honoraria for lectures and research funding from Otsuka Pharmaceutical. The Division of Integrative Renal Replacement Therapy is financially supported by Terumo, JMS, Kyowa Hakko Kirin, and Otsuka Pharmaceutical.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted (IRB approval number: 2015MdA-085 and 2016MdA-177).

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, A., Hirose, T., Ohsaki, Y. et al. Hydrochlorothiazide ameliorates polyuria caused by tolvaptan treatment of polycystic kidney disease in PCK rats. Clin Exp Nephrol 23, 455–464 (2019). https://doi.org/10.1007/s10157-018-1669-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-018-1669-9

Keywords

Navigation