Skip to main content

Advertisement

Log in

Interaction of CD80 with Neph1: a potential mechanism of podocyte injury

  • Original article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

The induction of CD80 on podocytes has been shown in animal models of podocyte injury and in certain cases of nephrotic syndrome. In a lipopolysaccharide (LPS)-induced mouse model of albuminuria, we have recently shown a signalling axis of LPS-myeloid cell activation-TNFα production-podocyte CD80 induction-albuminuria. Therefore, in this report, we investigated the cellular and molecular consequences of TNFα addition and CD80 expression on cultured podocytes.

Methods

A murine podocyte cell line was used for TNFα treatment and for over-expressing CD80. Expression and localization of various podocyte proteins was analysed by reverse transcriptase-polymerase chain reaction, western blotting and immunofluorescence. HEK293 cells were used to biochemically characterize interactions.

Results

Podocytes treated with LPS in vitro did not cause CD80 upregulation but TNFα treatment was associated with an increase in CD80 levels, actin derangement and poor wound healing. Podocytes stably expressing CD80 showed actin derangement and co-localization with Neph1. CD80 and Neph1 interaction was confirmed by pull down assays of CD80 and Neph1 transfected in HEK293 cells.

Conclusion

Addition of TNFα to podocytes causes CD80 upregulation, actin reorganization and podocyte injury. Overexpressed CD80 and Neph1 interact via their extracellular domain. This interaction implies a mechanism of slit diaphragm disruption and possible use of small molecules that disrupt CD80-Neph1 interaction as a potential for treatment of nephrotic syndrome associated with CD80 upregulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brinkkoetter PT, Ising C, Benzing T. The role of the podocyte in albumin filtration. Nat Rev Nephrol. 2013;9(6):328–36. doi:10.1038/nrneph.2013.78.

    Article  PubMed  CAS  Google Scholar 

  2. Pavenstadt H, Kriz W, Kretzler M. Cell biology of the glomerular podocyte. Physiol Rev. 2003;83(1):253–307. doi:10.1152/physrev.00020.2002.

    Article  PubMed  CAS  Google Scholar 

  3. Vivarelli M, Massella L, Ruggiero B, Emma F. Minimal change disease. Clin J Am Soc Nephrol. 2017;12(2):332–45. doi:10.2215/CJN.05000516.

    Article  PubMed  Google Scholar 

  4. Mathieson PW. Immune dysregulation in minimal change nephropathy. Nephrol Dial Transplant. 2003;18(Suppl 6):vi26-9.

    PubMed  Google Scholar 

  5. Zhang H, Wang Z, Dong L, Guo Y, Wu J, Zhai S. New insight into the pathogenesis of minimal change nephrotic syndrome: role of the persistence of respiratory tract virus in immune disorders. Autoimmun Rev. 2016;15(7):632–7. doi:10.1016/j.autrev.2016.02.007.

    Article  PubMed  CAS  Google Scholar 

  6. Lai KW, Wei CL, Tan LK, Tan PH, Chiang GS, Lee CG, et al. Overexpression of interleukin-13 induces minimal-change-like nephropathy in rats. J Am Soc Nephrol. 2007;18(5):1476–85. doi:10.1681/ASN.2006070710.

    Article  PubMed  CAS  Google Scholar 

  7. Reiser J, von Gersdorff G, Loos M, Oh J, Asanuma K, Giardino L, et al. Induction of B7-1 in podocytes is associated with nephrotic syndrome. J Clin Investig. 2004;113(10):1390–7. doi:10.1172/JCI20402.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Garin EH, Diaz LN, Mu W, Wasserfall C, Araya C, Segal M, et al. Urinary CD80 excretion increases in idiopathic minimal-change disease. J Am Soc Nephrol. 2009;20(2):260–6. doi:10.1681/ASN.2007080836.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Garin EH, Mu W, Arthur JM, Rivard CJ, Araya CE, Shimada M, et al. Urinary CD80 is elevated in minimal change disease but not in focal segmental glomerulosclerosis. Kidney Int. 2010;78(3):296–302. doi:10.1038/ki.2010.143.

    Article  PubMed  CAS  Google Scholar 

  10. Fiorina P, Vergani A, Bassi R, Niewczas MA, Altintas MM, Pezzolesi MG, et al. Role of podocyte B7-1 in diabetic nephropathy. J Am Soc Nephrol. 2014;25(7):1415–29. doi:10.1681/ASN.2013050518.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Yu CC, Fornoni A, Weins A, Hakroush S, Maiguel D, Sageshima J, et al. Abatacept in B7-1-positive proteinuric kidney disease. N Engl J Med. 2013;369(25):2416–23. doi:10.1056/NEJMoa1304572.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Benigni A, Gagliardini E, Remuzzi G. Abatacept in B7-1-positive proteinuric kidney disease. N Engl J Med. 2014;370(13):1261–3. doi:10.1056/NEJMc1400502#SA1.

    Article  PubMed  CAS  Google Scholar 

  13. Salant DJ. Podocyte expression of B7-1/CD80: is it a reliable biomarker for the treatment of proteinuric kidney diseases with abatacept? J Am Soc Nephrol. 2016;27(4):963–5. doi:10.1681/ASN.2015080947.

    Article  PubMed  CAS  Google Scholar 

  14. Larsen CP, Messias NC, Walker PD. B7-1 immunostaining in proteinuric kidney disease. Am J Kidney Dis. 2014;64(6):1001–3. doi:10.1053/j.ajkd.2014.07.023.

    Article  PubMed  Google Scholar 

  15. Gagliardini E, Novelli R, Corna D, Zoja C, Ruggiero B, Benigni A, et al. B7-1 is not induced in podocytes of human and experimental diabetic nephropathy. J Am Soc Nephrol. 2016;27(4):999–1005. doi:10.1681/ASN.2015030266.

    Article  PubMed  CAS  Google Scholar 

  16. Shimada M, Ishimoto T, Lee PY, Lanaspa MA, Rivard CJ, Roncal-Jimenez CA, et al. Toll-like receptor 3 ligands induce CD80 expression in human podocytes via an NF-kappaB-dependent pathway. Nephrol Dial Transplant. 2012;27(1):81–9. doi:10.1093/ndt/gfr271.

    Article  PubMed  CAS  Google Scholar 

  17. Jain N, Khullar B, Oswal N, Banoth B, Joshi P, Ravindran B, et al. TLR-mediated albuminuria needs TNFalpha-mediated cooperativity between TLRs present in hematopoietic tissues and CD80 present on non-hematopoietic tissues in mice. Dis Model Mech. 2016;9(6):707–17. doi:10.1242/dmm.023440.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Srivastava T, Sharma M, Yew KH, Sharma R, Duncan RS, Saleem MA, et al. LPS and PAN-induced podocyte injury in an in vitro model of minimal change disease: changes in TLR profile. J Cell Commun Signal. 2013;7(1):49–60. doi:10.1007/s12079-012-0184-0.

    Article  PubMed  Google Scholar 

  19. Gurkan S, Cabinian A, Lopez V, Bhaumik M, Chang JM, Rabson AB, et al. Inhibition of type I interferon signalling prevents TLR ligand-mediated proteinuria. J Pathol. 2013;231(2):248–56.

    Article  PubMed  CAS  Google Scholar 

  20. Ishimoto T, Shimada M, Gabriela G, Kosugi T, Sato W, Lee PY, et al. Toll-like receptor 3 ligand, polyIC, induces proteinuria and glomerular CD80, and increases urinary CD80 in mice. Nephrol Dial Transplant. 2013;28(6):1439–46. doi:10.1093/ndt/gfs543.

    Article  PubMed  CAS  Google Scholar 

  21. Schiwek D, Endlich N, Holzman L, Holthofer H, Kriz W, Endlich K. Stable expression of nephrin and localization to cell-cell contacts in novel murine podocyte cell lines. Kidney Int. 2004;66(1):91–101. doi:10.1111/j.1523-1755.2004.00711.x.

    Article  PubMed  CAS  Google Scholar 

  22. Takano Y, Yamauchi K, Hiramatsu N, Kasai A, Hayakawa K, Yokouchi M, et al. Recovery and maintenance of nephrin expression in cultured podocytes and identification of HGF as a repressor of nephrin. Am J Physiol Ren Physiol. 2007;292(5):F1573–82. doi:10.1152/ajprenal.00423.2006.

    Article  CAS  Google Scholar 

  23. Clement LC, Avila-Casado C, Mace C, Soria E, Bakker WW, Kersten S, et al. Podocyte-secreted angiopoietin-like-4 mediates proteinuria in glucocorticoid-sensitive nephrotic syndrome. Nat Med. 2011;17(1):117–22. doi:10.1038/nm.2261.

    Article  PubMed  CAS  Google Scholar 

  24. Zhang SY, Kamal M, Dahan K, Pawlak A, Ory V, Desvaux D, et al. c-mip impairs podocyte proximal signaling and induces heavy proteinuria. Sci Signal. 2010;3(122):ra39. doi:10.1126/scisignal.2000678.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Lennon R, Singh A, Welsh GI, Coward RJ, Satchell S, Ni L, et al. Hemopexin induces nephrin-dependent reorganization of the actin cytoskeleton in podocytes. J Am Soc Nephrol. 2008;19(11):2140–9. doi:10.1681/ASN.2007080940.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Hahm E, Wei C, Fernandez I, Li J, Tardi NJ, Tracy M, et al. Bone marrow-derived immature myeloid cells are a main source of circulating suPAR contributing to proteinuric kidney disease. Nat Med. 2017;23(1):100–6. doi:10.1038/nm.4242.

    Article  PubMed  CAS  Google Scholar 

  27. Baye E, Gallazzini M, Delville M, Legendre C, Terzi F, Canaud G. The costimulatory receptor B7-1 is not induced in injured podocytes. Kidney Int. 2016;90(5):1037–44. doi:10.1016/j.kint.2016.06.022.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Koukouritaki SB, Vardaki EA, Papakonstanti EA, Lianos E, Stournaras C, Emmanouel DS. TNF-alpha induces actin cytoskeleton reorganization in glomerular epithelial cells involving tyrosine phosphorylation of paxillin and focal adhesion kinase. Mol Med. 1999;5(6):382–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Arif E, Rathore YS, Kumari B, Ashish F, Wong HN, Holzman LB, et al. Slit diaphragm protein Neph1 and its signaling: a novel therapeutic target for protection of podocytes against glomerular injury. J Biol Chem. 2014;289(14):9502–18. doi:10.1074/jbc.M113.505743.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Arif E, Wagner MC, Johnstone DB, Wong HN, George B, Pruthi PA, et al. Motor protein Myo1c is a podocyte protein that facilitates the transport of slit diaphragm protein Neph1 to the podocyte membrane. Mol Cell Biol. 2011;31(10):2134–50. doi:10.1128/MCB.05051-11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Kim EY, Chiu YH, Dryer SE. Neph1 regulates steady-state surface expression of Slo1 Ca(2+)-activated K(+) channels: different effects in embryonic neurons and podocytes. Am J Physiol Cell Physiol. 2009;297(6):C1379–88. doi:10.1152/ajpcell.00354.2009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Grahammer F, Schell C, Huber TB. The podocyte slit diaphragm—from a thin grey line to a complex signalling hub. Nat Rev Nephrol. 2013;9(10):587–98. doi:10.1038/nrneph.2013.169.

    Article  PubMed  CAS  Google Scholar 

  33. Peach RJ, Bajorath J, Naemura J, Leytze G, Greene J, Aruffo A, et al. Both extracellular immunoglobin-like domains of CD80 contain residues critical for binding T cell surface receptors CTLA-4 and CD28. J Biol Chem. 1995;270(36):21181–7.

    Article  PubMed  CAS  Google Scholar 

  34. Donoviel DB, Freed DD, Vogel H, Potter DG, Hawkins E, Barrish JP, et al. Proteinuria and perinatal lethality in mice lacking NEPH1, a novel protein with homology to NEPHRIN. Mol Cell Biol. 2001;21(14):4829–36. doi:10.1128/MCB.21.14.4829-4836.2001.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Wagner MC, Rhodes G, Wang E, Pruthi V, Arif E, Saleem MA, et al. Ischemic injury to kidney induces glomerular podocyte effacement and dissociation of slit diaphragm proteins Neph1 and ZO-1. J Biol Chem. 2008;283(51):35579–89. doi:10.1074/jbc.M805507200.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Doublier S, Ruotsalainen V, Salvidio G, Lupia E, Biancone L, Conaldi PG, et al. Nephrin redistribution on podocytes is a potential mechanism for proteinuria in patients with primary acquired nephrotic syndrome. Am J Pathol. 2001;158(5):1723–31. doi:10.1016/S0002-9440(10)64128-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

BK, RB, NO, NJ, AS and SS carried out the experiments. SS, SR and VB conceived the notion and provided intellectual content. BK compiled and analyzed the data and helped in manuscript preparation. MZA provided help in data analysis. AB, SB, UCMN and NW helped in data analysis and interpretation. SS, VB, SR and AG interpreted the data and wrote the article.

Corresponding author

Correspondence to Shailaja Sopory.

Ethics declarations

Sources of funding

This work was supported in part by grants from the Department of Biotechnology, Ministry of Science and Technology (DBT) India (Grant numbers BT/PR12849/MED/15/35/2009 and BT/PR5138/BRB/10/1064/2012 to AG, Grant numbers BT/PR-14592/BRB/10/858/2010 and BT/PR/14651/MED/30/566/2010 to SR, Grant number BT/PR14420/Med/29/213/2010 to VB, and Grant number BT/Bio CARe/08/48/2010-2011 to SS); Department of Science and Technology, Ministry of Science and Technology, India (Grant number SR/SO/BB-0035/2013 to AG, grant number SR/SO/HS-0005/2011 to VB) and fellowships from the Council of Scientific and Industrial Research to BK, NO and NJ. National Institute of Immunology and Translational Health Science and Technology Institute are supported by DBT, Government of India.

Conflict of interest

The authors declare no competing or financial interests.

Research involving animals

All mice handling was done at the National Institute of Immunology (NII) and mice were used with the approval of the NII Institutional Animal Ethics Committee (IAEC). The title of the IAEC approved project was “Studies to understand pathogenic mechanisms associated with proteinuria in nephrotic syndrome” with approval number NII-IAEC#349/14.

Informed consent

No human subjects were involved in this study.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khullar, B., Balyan, R., Oswal, N. et al. Interaction of CD80 with Neph1: a potential mechanism of podocyte injury. Clin Exp Nephrol 22, 508–516 (2018). https://doi.org/10.1007/s10157-017-1489-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-017-1489-3

Keywords

Navigation