Skip to main content

Advertisement

Log in

Olmesartan protects endothelial cells against oxidative stress-mediated cellular injury

  • Original Article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

The primary cause of death of hemodialysis (HD) patients is cardiovascular disease, and increased oxidative stress has been proposed to be involved in the disease pathogenesis. In this study, we examined the effect of olmesartan on oxidative stress induced by angiotensin II, lipopolysaccharide, indoxyl sulfate, advanced oxidation protein products (AOPP) or hydrogen peroxide (H2O2), which are known to be present at higher concentrations in the blood of HD patients, using human umbilical vein endothelial cells (HUVECs).

Methods

Oxidative stress was evaluated by measuring the mean fluorescence intensity of CM-H2DCFCA, an ROS-sensitive fluorescent dye, in HUVECs. HUVECs were incubated with each of the above compounds in the presence or absence of olmesartan. Moreover, these oxidant-stimulated cells were also treated with the reactive oxygen species (ROS) inhibitor N-acetyl-cysteine (NAC), NADPH oxidase inhibitor diphenylene iodonium (DPI) or PKC inhibitor calphostin C. In addition, we investigated the effects of olmesartan on cytotoxicity and vascular endothelial growth factor (VEGF) secretion, which is involved in vascular inflammation in HUVECs induced by AOPP or H2O2.

Results

The treatment of these oxidant-stimulated cells with olmesartan resulted in a significant reduction in intracellular ROS production to an extent that was nearly equivalent to that of NAC, DPI or calphostin C. Furthermore, olmesartan reduced the cytotoxicity and VEGF secretion induced by AOPP or H2O2.

Conclusions

These results demonstrated that the antioxidant activity of olmesartan might contribute to both its vasculoprotective and anti-hypertensive effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lewis EJ, Hunsicker LG, Clarke WR, Berl T, Pohl MA, Lewis JB, et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med. 2001;345(12):851–60.

    Article  CAS  PubMed  Google Scholar 

  2. Haller H, Viberti GC, Mimran A, Remuzzi G, Rabelink AJ, Ritz E, et al. Preventing microalbuminuria in patients with diabetes: rationale and design of the Randomised Olmesartan and Diabetes Microalbuminuria Prevention (ROADMAP) study. J Hypertens. 2006;24(2):403–8.

    Article  CAS  PubMed  Google Scholar 

  3. Akhrass PR, McFarlane SI. Telmisartan and cardioprotection. Vasc Health Risk Manag. 2011;7:677–83.

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Miyata T, van Ypersele de Strihou C, Ueda Y, Ichimori K, Inagi R, Onogi H, et al. Angiotensin II receptor antagonists and angiotensin-converting enzyme inhibitors lower in vitro the formation of advanced glycation end products: biochemical mechanisms. J Am Soc Nephrol. 2002;13(10):2478–87.

    Article  CAS  PubMed  Google Scholar 

  5. Nangaku M, Miyata T, Sada T, Mizuno M, Inagi R, Ueda Y, et al. Anti-hypertensive agents inhibit in vivo the formation of advanced glycation end products and improve renal damage in a type 2 diabetic nephropathy rat model. J Am Soc Nephrol. 2003;14(5):1212–22.

    Article  CAS  PubMed  Google Scholar 

  6. Honda H, Hosaka N, Aoshima Y, Hirai Y, Michihata T, Akizawa T. Olmesartan medoxomil is associated with decreased plasma AGEs, pentosidine, and N-(epsilon)-carboxymethyl-lysine levels in hemodialysis patients. Clin Exp Hypertens. 2012;34(1):17–23.

    Article  CAS  PubMed  Google Scholar 

  7. Kadowaki D, Anraku M, Tasaki Y, Kitamura K, Wakamatsu S, Tomita K, et al. Effect of olmesartan on oxidative stress in hemodialysis patients. Hypertens Res. 2007;30(5):395–402.

    Article  CAS  PubMed  Google Scholar 

  8. Kadowaki D, Anraku M, Tasaki Y, Taguchi K, Shimoishi K, Seo H, et al. Evaluation for antioxidant and renoprotective activity of olmesartan using nephrectomy rats. Biol Pharm Bull. 2009;32(12):2041–5.

    Article  CAS  PubMed  Google Scholar 

  9. Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res. 1994;74(6):1141–8.

    Article  CAS  PubMed  Google Scholar 

  10. Weiss D, Kools JJ, Taylor WR. Angiotensin II-induced hypertension accelerates the development of atherosclerosis in apoE-deficient mice. Circulation. 2001;103(3):448–54.

    Article  CAS  PubMed  Google Scholar 

  11. Koh KK, Ahn JY, Han SH, Kim DS, Jin DK, Kim HS, et al. Pleiotropic effects of angiotensin II receptor blocker in hypertensive patients. J Am Coll Cardiol. 2003;42(5):905–10.

    Article  CAS  PubMed  Google Scholar 

  12. Nockher WA, Scherberich JE. Monocyte cell-surface CD14 expression and soluble CD14 antigen in hemodialysis: evidence for chronic exposure to LPS. Kidney Int. 1995;48(5):1469–76.

    Article  CAS  PubMed  Google Scholar 

  13. Li H, Forstermann U. Structure-activity relationship of staurosporine analogs in regulating expression of endothelial nitric-oxide synthase gene. Mol Pharmacol. 2000;57(3):427–35.

    CAS  PubMed  Google Scholar 

  14. Heitzer T, Wenzel U, Hink U, Krollner D, Skatchkov M, Stahl RA, et al. Increased NAD(P)H oxidase-mediated superoxide production in renovascular hypertension: evidence for an involvement of protein kinase C. Kidney Int. 1999;55(1):252–60.

    Article  CAS  PubMed  Google Scholar 

  15. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med. 1995;1(1):27–31.

    Article  CAS  PubMed  Google Scholar 

  16. Marumo T, Schini-Kerth VB, Busse R. Vascular endothelial growth factor activates nuclear factor-kappaB and induces monocyte chemoattractant protein-1 in bovine retinal endothelial cells. Diabetes. 1999;48(5):1131–7.

    Article  CAS  PubMed  Google Scholar 

  17. Ferrara N. Role of vascular endothelial growth factor in the regulation of angiogenesis. Kidney Int. 1999;56(3):794–814.

    Article  CAS  PubMed  Google Scholar 

  18. Iwai M, Chen R, Li Z, Shiuchi T, Suzuki J, Ide A, et al. Deletion of angiotensin II type 2 receptor exaggerated atherosclerosis in apolipoprotein E-null mice. Circulation. 2005;112(11):1636–43.

    Article  CAS  PubMed  Google Scholar 

  19. Ohshima K, Mogi M, Nakaoka H, Iwanami J, Min LJ, Kanno H, et al. Possible role of angiotensin-converting enzyme 2 and activation of angiotensin II type 2 receptor by angiotensin-(1-7) in improvement of vascular remodeling by angiotensin II type 1 receptor blockade. Hypertension. 2014;63(3):e53–9.

    Article  CAS  PubMed  Google Scholar 

  20. Shimada H, Kitamura K, Anraku M, Miyoshi T, Adachi M, Tuyen DG, et al. Effect of telmisartan on ambulatory blood pressure monitoring, plasma brain natriuretic peptide, and oxidative status of serum albumin in hemodialysis patients. Hypertens Res. 2005;28(12):987–94.

    Article  CAS  PubMed  Google Scholar 

  21. Kim I, Moon SO, Kim SH, Kim HJ, Koh YS, Koh GY. Vascular endothelial growth factor expression of intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and E-selectin through nuclear factor-kappa B activation in endothelial cells. J Biol Chem. 2001;276(10):7614–20.

    Article  CAS  PubMed  Google Scholar 

  22. Jinno T, Iwai M, Li Z, Li JM, Liu HW, Cui TX, et al. Calcium channel blocker azelnidipine enhances vascular protective effects of AT1 receptor blocker olmesartan. Hypertension. 2004;43(2):263–9.

    Article  CAS  PubMed  Google Scholar 

  23. Wang X, Khaidakov M, Ding Z, Mitra S, Lu J, Liu S, et al. Cross-talk between inflammation and angiotensin II: studies based on direct transfection of cardiomyocytes with AT1R and AT2R cDNA. Exp Biol Med (Maywood). 2012;237(12):1394–401.

    Article  CAS  PubMed  Google Scholar 

  24. Bagi Z, Erdei N, Koller A. High intraluminal pressure via H2O2 upregulates arteriolar constrictions to angiotensin II by increasing the functional availability of AT1 receptors. Am J Physiol Heart Circ Physiol. 2008;295(2):H835–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Cao W, Xu J, Zhou ZM, Wang GB, Hou FF, Nie J. Advanced oxidation protein products activate intrarenal renin-angiotensin system via a CD36-mediated, redox-dependent pathway. Antioxid Redox Signal. 2013;18(1):19–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Sun CY, Chang SC, Wu MS. Uremic toxins induce kidney fibrosis by activating intrarenal renin-angiotensin-aldosterone system associated epithelial-to-mesenchymal transition. PLoS One. 2012;7(3):e34026.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Ross R. Atherosclerosis is an inflammatory disease. Am Heart J. 1999;138(5 Pt 2):S419–20.

    Article  CAS  PubMed  Google Scholar 

  28. Yoshida T, Yamagishi S, Nakamura K, Matsui T, Imaizumi T, Takeuchi M, et al. Telmisartan inhibits AGE-induced C-reactive protein production through downregulation of the receptor for AGE via peroxisome proliferator-activated receptor-gamma activation. Diabetologia. 2006;49(12):3094–9.

    Article  CAS  PubMed  Google Scholar 

  29. Nakamura K, Yamagishi S, Nakamura Y, Takenaka K, Matsui T, Jinnouchi Y, et al. Telmisartan inhibits expression of a receptor for advanced glycation end products (RAGE) in angiotensin-II-exposed endothelial cells and decreases serum levels of soluble RAGE in patients with essential hypertension. Microvasc Res. 2005;70(3):137–41.

    Article  CAS  PubMed  Google Scholar 

  30. Ohgami N, Nagai R, Ikemoto M, Arai H, Kuniyasu A, Horiuchi S, et al. Cd36, a member of the class b scavenger receptor family, as a receptor for advanced glycation end products. J Biol Chem. 2001;276(5):3195–202.

    Article  CAS  PubMed  Google Scholar 

  31. Fujita M, Okuda H, Tsukamoto O, Asano Y, Hirata YL, Kim J, et al. Blockade of angiotensin II receptors reduces the expression of receptors for advanced glycation end products in human endothelial cells. Arterioscler Thromb Vasc Biol. 2006;26(10):e138–42.

    Article  CAS  PubMed  Google Scholar 

  32. Hayek T, Aviram M, Heinrich R, Sakhnini E, Keidar S. Losartan inhibits cellular uptake of oxidized LDL by monocyte-macrophages from hypercholesterolemic patients. Biochem Biophys Res Commun. 2000;273(2):417–20.

    Article  CAS  PubMed  Google Scholar 

  33. Tanifuji C, Suzuki Y, Geot WM, Horikoshi S, Sugaya T, Ruiz-Ortega M, et al. Reactive oxygen species-mediated signaling pathways in angiotensin II-induced MCP-1 expression of proximal tubular cells. Antioxid Redox Signal. 2005;7(9–10):1261–8.

    Article  CAS  PubMed  Google Scholar 

  34. Teng J, Fukuda N, Suzuki R, Takagi H, Ikeda Y, Tahira Y, et al. Inhibitory effect of a novel angiotensin II type 1 receptor antagonist RNH-6270 on growth of vascular smooth muscle cells from spontaneously hypertensive rats: different anti-proliferative effect to angiotensin-converting enzyme inhibitor. J Cardiovasc Pharmacol. 2002;39(2):161–71.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

All of the authors have declared that there are no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Toru Maruyama or Masaki Otagiri.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadowaki, D., Anraku, M., Sakaya, M. et al. Olmesartan protects endothelial cells against oxidative stress-mediated cellular injury. Clin Exp Nephrol 19, 1007–1014 (2015). https://doi.org/10.1007/s10157-015-1111-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-015-1111-5

Keywords

Navigation