Skip to main content

Advertisement

Log in

Novel urinary biomarkers in pre-diabetic nephropathy

  • Original Article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

Renal involvement was thought to occur more than 10 years after onset of diabetes, but recent studies provide evidence that it starts even in the pre-diabetes stage. However, there is no sensitive marker to detect these changes at such early stages. Novel urinary biomarkers have showed promising results in detection of early nephropathy in pre-diabetics.

Methods

A total of 91 subjects (diabetes 61 and pre-diabetes 30) were enrolled into the study. Urinary biomarkers such as urine Neutrophil Gelatinase-Associated Lipocalin (NGAL), urine Cystatin C and urine albumin–creatinine ratio (UACR) were estimated. Subjects were further divided in four groups on the basis of UACR: pre-diabetes with normoalbuminuria (21); pre-diabetes with microalbuminuria (9); diabetes with normoalbuminuria (37); and diabetes with microalbuminuria (24). The relationship of UACR, NGAL, and Cystatin C was estimated.

Results

Urine levels of NGAL and Cystatin C were significantly higher in microalbuminuria group compared to normoalbuminuria. UACR was positively correlated to urine NGAL–creatinine ratio (UNCR) and urine Cystatin C–creatinine ratio (UCCR) in both diabetes and pre-diabetes. On logistic regression odds ratio of UNCR to predict microalbuminuria in diabetes and pre-diabetes was 1.070 (p = 0.000) and 1.138 (p = 0.010), respectively. Area under curve was determined by ROC analysis, and UNCR was found to be better than UCCR for estimating microalbuminuria.

Conclusion

Tubular damage may play major role in development of nephropathy in pre-diabetes. Newer markers like urine NGAL and Cystatin C are raised early in diabetes and pre-diabetes nephropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2014;37:s81–90.

    Article  Google Scholar 

  2. Thomas MC, Burns WC, Cooper ME. Tubular changes in early diabetic nephropathy. Adv Chronic Kidney Dis. 2005;12:177–86.

    Article  CAS  PubMed  Google Scholar 

  3. Comper WD, Hilliard LM, Nikolic-Paterson DJ, Russo LM. Disease dependent mechanism of albuminuria. Am J Physiol Renal Physiol. 2008;295:F1589–600.

    Article  CAS  PubMed  Google Scholar 

  4. Krolewski AS, Niewczas MA, Skupien J, et al. Early progressive renal decline precedes the onset of microalbuminuria and its progression to macroalbuminuria. Diabetes Care. 2014;37:226–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Molitch ME, Steffes M, Sun W, Epidemiology of Diabetes Interventions and Complications Study Group, et al. Development and progression of renal insufficiency with and without albuminuria in adults with type 1 diabetes in the diabetes control and complications trial and the epidemiology of diabetes interventions and complications study. Diabetes Care. 2010;33:1536–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Kramer HJ, Nguyen QD, Curhan G, Hsu CY. Renal insufficiency in the absence of albuminuria and retinopathy among adults with type 2 diabetes mellitus. JAMA. 2003;289:3273–7.

    Article  PubMed  Google Scholar 

  7. National Kidney Foundation. KDOQI clinical practice guideline for diabetes and CKD: 2012 update. Am J Kidney Dis. 2012;60:850–86.

    Article  Google Scholar 

  8. Barratt J, Topham P. Urine proteomics: the present and future of measuring urinary protein components in disease. CMAJ. 2007;177:361–8.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Jeon YK, Kim MR, Huh JE, Mok JY, et al. Cystatin C as an early biomarker of nephropathy in patients with type 2 diabetes. J Korean Med Sci. 2011;26:258–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Nielsen SE, Schjoedt KJ, Astrup AS, Tarnow L, et al. Neutrophil Gelatinase-Associated Lipocalin (NGAL) and Kidney Injury Molecule 1 (KIM1) in patients with diabetic nephropathy: a cross-sectional study and the effects of lisinopril. Diabet Med. 2010;27(10):1144–50.

    Article  CAS  PubMed  Google Scholar 

  11. Dharnidharka VR, Kwon C, Stevens G. Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta-analysis. Am J Kidney Dis. 2002;40:221–6.

    Article  CAS  PubMed  Google Scholar 

  12. Filler G, Bokenkamp A, Hofmann W, Le Bricon T, et al. Cystatin C as a marker of GFR -history, indications, and future research. Clin Biochem. 2005;38:1–8.

    Article  CAS  PubMed  Google Scholar 

  13. Yang J, Mori K, Li JY, Barasch J. Iron, lipocalin, and kidney epithelia. Am J Physiol Renal Physiol. 2003;285:F9–18.

    Article  CAS  PubMed  Google Scholar 

  14. Mishra J, Ma Q, Prada A, Mitsnefes M, et al. Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. J Am Soc Nephrol. 2003;14:2534–43.

    Article  CAS  PubMed  Google Scholar 

  15. Mishra J, Mori K, Ma Q, Kelly C, Barasch J, Devarajan P. Neutrophil gelatinase associated lipocalin: a novel early urinary biomarker for cisplatin nephrotoxicity. Am J Nephrol. 2004;24:307–15.

    Article  CAS  PubMed  Google Scholar 

  16. Mishra J, Dent C, Tarabishi R, Mitsnefes MM, et al. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet. 2005;365:1231–8.

    Article  CAS  PubMed  Google Scholar 

  17. Kim SS, Song SH, Kim IJ, Jeon YK, et al. Urinary Cystatin C and Tubular proteinuria predict progression of diabetic nephropathy. Diabetes Care. 2013;36:656–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Nauta FL, Boertien WE, Bakker SJL, Goor HV, et al. Glomerular markers are elevated in patients with diabetes. Diabetes Care. 2011;34:975–81.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Wu J, Ding Y, Zhu C, Shao X, et al. Urinary TNF-α and NGAL are correlated with the progression of nephropathy in patients with type 2 diabetes. Exp Ther Med. 2013;6:1482–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Fu WJ, Li BL, Wang SB, Chen ML, et al. Changes of the tubular markers in type 2 diabetes mellitus with glomerular hyperfiltration. Diabetes Res Clin Pract. 2012;95(1):105–9.

    Article  CAS  PubMed  Google Scholar 

  21. Holman RR, Paul SK, Bethel MA, Matthews DR, et al. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359:1577–89.

    Article  CAS  PubMed  Google Scholar 

  22. Remuzzi G, Macia M, Ruggenenti P. Prevention and treatment of diabetic renal disease in type 2 diabetes: the BENEDICT study. J Am Soc Nephrol. 2006;17(S2):S90–7.

    Article  PubMed  Google Scholar 

  23. Heart Outcomes Prevention Evaluation Study Investigators. Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy. Lancet. 2000;355:253–9.

    Article  Google Scholar 

  24. Borgman JM, Skorecki K. Chronic kidney disease. In: Longo DL, Fauci AS, Kasper DL, Hauser SL, Jameson JL,editors. Harrison’s principles of internal medicine. 18th ed. New York: McGraw-Hill; 2012. p. 2308–2321.

  25. Levey AS, Bosch JP, Lewis JB, Green T, et al. A more accurate method to estimate glomerular filtration rate from serum creatinine: A new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med. 1999;130:461–70.

    Article  CAS  PubMed  Google Scholar 

  26. Tapp RJ, Shaw JE, Zimmet PZ, Balkau B, et al. Albuminuria is evident in the early stages of diabetes onset: results from the Australian Diabetes, Obesity, and Lifestyle Study (AusDiab). Am J Kidney Dis. 2004;44(5):792–8.

    Article  PubMed  Google Scholar 

  27. Tarsio JF, Reger LA, Furcht LT. Molecular mechanisms in basement membrane complications of diabetes. Alterations in heparin, laminin, and type IV collagen association. Diabetes. 1988;37(5):532–9.

    Article  CAS  PubMed  Google Scholar 

  28. Duncan ER, Walker SJ, Ezzat VA, Wheatcroft SB, et al. Accelerated endothelial dysfunction in mild prediabetic insulin resistance: the early role of reactive oxygen species. Am J Physiol Endocrinol Metab. 2007;293:E1311–9.

    Article  CAS  PubMed  Google Scholar 

  29. Makris K, Nikolaki E, Nanopoulos K, Pirqakis KM, et al. Measurement of Cystatin C in human urine by particle enhanced turbidimetric immunoassay on automated biochemistry analyzer. Clin Biochem. 2013;46(12):1128–30.

    Article  CAS  PubMed  Google Scholar 

  30. Conti M, Moutereau S, Zater M, Lallali K, et al. Urinary Cystatin C as a specific marker of tubular dysfunction. Clin Chem Lab Med. 2006;44(3):288–91.

    Article  CAS  PubMed  Google Scholar 

  31. Woo KS, Choi JL, Kim BR, Kim JE, et al. Urinary neutrophil gelatinase-associated lipocalin levels in comparison with glomerular filtration rate for evaluation of renal function in patients with diabetic chronic kidney disease. Diabetes Metab J. 2012;36:307–13.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Lacquaniti A, Donato V, Pintaudi B, Vieste GD, et al. ‘‘Normoalbuminuric’’ diabetic nephropathy: tubular damage and NGAL. Acta Diabetol. 2013;50:935–42.

    Article  CAS  PubMed  Google Scholar 

  33. Assal HS, Tawfeek S, Rasheed EA, Lebedy DE, et al. Serum cystatin C and tubular urinary enzymes as biomarkers of renal dysfunction in type 2 diabetes mellitus. Clin Med Insights Endocrinol Diab. 2013;6:7–13.

    Google Scholar 

  34. Fu WJ, Xiong SL, Fang YG, Wen S, et al. Urinary tubular biomarkers in short-term type 2 diabetes mellitus patients: a cross-sectional study. Endocrine. 2012;41(1):82–8.

    Article  CAS  PubMed  Google Scholar 

  35. Mori K, Lee HT, Rapoport D, Drexler IR, et al. Endocytic delivery of lipocalin-siderophore-iron complex rescues the kidney from ischemia-reperfusion injury. J Clin Invest. 2005;115(3):610–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Kaseda R, Iino N, Hosojima M, Takeda T, et al. Megalin-mediated endocytosis of cystatin C in proximal tubule cells. Biochem Biophys Res Commun. 2007;357(4):1130–4.

    Article  CAS  PubMed  Google Scholar 

  37. Vaidya VS, Waikar SS, Ferguson MA, et al. Urinary biomarkers for sensitive and specific detection of acute kidney injury in humans. Clin Transl Sci. 2008;1(3):200–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Russo LM, Sandoval RM, Campos SB, et al. Impaired tubular uptake explains albuminuria in early diabetic nephropathy. J Am Soc Nephrol. 2006;17:2937–44.

    Article  Google Scholar 

Download references

Conflict of interest

The authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Himansu Sekhar Mahapatra.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, V., Kumar, M., Mahapatra, H.S. et al. Novel urinary biomarkers in pre-diabetic nephropathy. Clin Exp Nephrol 19, 895–900 (2015). https://doi.org/10.1007/s10157-015-1085-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-015-1085-3

Keywords

Navigation