Skip to main content

Advertisement

Log in

The roles of V1a vasopressin receptors in blood pressure homeostasis: a review of studies on V1a receptor knockout mice

  • Review Article
  • The 36th IUPS Satellite Symposium: The Kidney and Hypertension
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

A prompt rise in blood pressure occurs when arginine-vasopressin is administered in quantities adequate to activate vascular V1a subtype vasopressin receptors. However, it has been controversial whether the endogenous vasopressin-V1a system contributes to the maintenance of basal blood pressure during normal development and aging. Mutant mice lacking the V1a receptor gene (V1a−/−) show significantly lower blood pressure compared to control mice, without a notable change in heart rate. In V1a−/− mice, arterial baroreceptor reflexes were attenuated due to malfunctioning baroreflex center, and the mice’s circulating blood volume was significantly reduced. In line with this reduction in circulating blood volume, adrenocortical hormone release was attenuated; plasma aldosterone levels were reduced and adrenocorticotropic hormone-stimulated corticosteroid release was attenuated. In addition, V1a receptor expression was detected in macula densa cells of the kidneys, which may have facilitated renin production from the juxtaglomerular cells. Deletion of the V1a receptor appears to impact the renin–angiotensin–aldosterone system. Studies on V1a−/− mice revealed that non-vascular V1a receptors in the central nervous system and peripheral tissues play critical roles in the maintenance of blood pressure homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kovacs GL, Bohus B, Versteeg DH, de Kloet ER, de Wied D. Effect of oxytocin and vasopressin on memory consolidation: sites of action and catecholaminergic correlates after local microinjection into limbic-midbrain structures. Brain Res. 1979;175(2):303–14.

    Article  PubMed  CAS  Google Scholar 

  2. Kribben A, Wieder ED, Li X, van Putten V, Granot Y, Schrier RW, Nemenoff RA. AVP-induced activation of MAP kinase in vascular smooth muscle cells is mediated through protein kinase C. Am J Physiol. 1993;265(4 Pt 1):C939–45.

    PubMed  CAS  Google Scholar 

  3. Rivier C, Vale W. Modulation of stress-induced ACTH release by corticotropin-releasing factor, catecholamines and vasopressin. Nature. 1983;305(5932):325–7.

    Article  PubMed  CAS  Google Scholar 

  4. Hems DA, Whitton PD. Stimulation by vasopressin of glycogen breakdown and gluconeogenesis in the perfused rat liver. Biochem J. 1973;136(3):705–9.

    PubMed  CAS  Google Scholar 

  5. Nielsen S, DiGiovanni SR, Christensen EI, Knepper MA, Harris HW. Cellular and subcellular immunolocalization of vasopressin-regulated water channel in rat kidney. Proc Natl Acad Sci USA. 1993;90(24):11663–7.

    Article  PubMed  CAS  Google Scholar 

  6. Johnston CI. Vasopressin in circulatory control and hypertension. J Hypertens. 1985;3(6):557–69.

    Article  PubMed  CAS  Google Scholar 

  7. Thibonnier M, Coles P, Thibonnier A, Shoham M. Molecular pharmacology and modeling of vasopressin receptors. Prog Brain Res. 2002;139:179–96.

    Article  PubMed  CAS  Google Scholar 

  8. Ali F, Guglin M, Vaitkevicius P, Ghali JK. Therapeutic potential of vasopressin receptor antagonists. Drugs. 2007;67(6):847–58.

    Article  PubMed  CAS  Google Scholar 

  9. Share L. Role of vasopressin in cardiovascular regulation. Physiol Rev. 1988;68(4):1248–84.

    PubMed  CAS  Google Scholar 

  10. Liard JF. Vasopressin in cardiovascular control: role of circulating vasopressin. Clin Sci (Lond). 1984;67(5):473–81.

    CAS  Google Scholar 

  11. Erlenbach I, Wess J. Molecular basis of V2 vasopressin receptor/Gs coupling selectivity. J Biol Chem. 1998;273(41):26549–58.

    Article  PubMed  CAS  Google Scholar 

  12. Ostrowski NL, Young WS 3rd, Knepper MA, Lolait SJ. Expression of vasopressin V1a and V2 receptor messenger ribonucleic acid in the liver and kidney of embryonic, developing, and adult rats. Endocrinology. 1993;133(4):1849–59.

    Article  PubMed  CAS  Google Scholar 

  13. Klussmann E, Maric K, Wiesner B, Beyermann M, Rosenthal W. Protein kinase A anchoring proteins are required for vasopressin-mediated translocation of aquaporin-2 into cell membranes of renal principal cells. J Biol Chem. 1999;274(8):4934–8.

    Article  PubMed  CAS  Google Scholar 

  14. Burrell LM, Phillips PA, Risvanis J, Aldred KL, Hutchins AM, Johnston CI. Attenuation of genetic hypertension after short-term vasopressin V1A receptor antagonism. Hypertension. 1995;26(5):828–34.

    PubMed  CAS  Google Scholar 

  15. Burrell LM, Phillips PA, Stephenson JM, Risvanis J, Rolls KA, Johnston CI. Blood pressure-lowering effect of an orally active vasopressin V1 receptor antagonist in mineralocorticoid hypertension in the rat. Hypertension. 1994;23(6 Pt 1):737–43.

    PubMed  CAS  Google Scholar 

  16. Jackson EK. Vasopressin and other agents affecting the renal conservation of water. In: Hardman JG, Limbird LE, Goodman Gilman A, editors. Goodman & Gilman’s the pharmacological basis of therapeutics. MacGraw-Hill: New York; 1996. p. 715–31.

    Google Scholar 

  17. Yamamura Y, Ogawa H, Chihara T, Kondo K, Onogawa T, Nakamura S, Mori T, Tominaga M, Yabuuchi Y. OPC-21268, an orally effective, nonpeptide vasopressin V1 receptor antagonist. Science. 1991;252(5005):572–4.

    Article  PubMed  CAS  Google Scholar 

  18. Serradeil-Le Gal C, Wagnon J, Garcia C, Lacour C, Guiraudou P, Christophe B, Villanova G, Nisato D, Maffrand JP, Le Fur G, et al. Biochemical and pharmacological properties of SR 49059, a new, potent, nonpeptide antagonist of rat and human vasopressin V1a receptors. J Clin Invest. 1993;92(1):224–31.

  19. Chapman JT, Hreash F, Laycock JF, Walter SJ. The cardiovascular effects of vasopressin after haemorrhage in anaesthetized rats. J Physiol. 1986;375:421–34.

    PubMed  CAS  Google Scholar 

  20. Sladek CD, Blair ML, Sterling C, Mangiapane ML. Attenuation of spontaneous hypertension in rats by a vasopressin antagonist. Hypertension. 1988;12(5):506–12.

    PubMed  CAS  Google Scholar 

  21. Valtin H. The discovery of the Brattleboro rat, recommended nomenclature, and the question of proper controls. Ann N Y Acad Sci. 1982;394:1–9.

    Article  PubMed  CAS  Google Scholar 

  22. Padfield PL, Brown JJ, Lever AF, Morton JJ, Robertson JI. Blood pressure in acute and chronic vasopressin excess: studies of malignant hypertension and the syndrome of inappropriate antidiuretic hormone secretion. N Engl J Med. 1981;304(18):1067–70.

    Article  PubMed  CAS  Google Scholar 

  23. Koshimizu TA, Nasa Y, Tanoue A, Oikawa R, Kawahara Y, Kiyono Y, Adachi T, Tanaka T, Kuwaki T, Mori T, Takeo S, Okamura H, Tsujimoto G. V1a vasopressin receptors maintain normal blood pressure by regulating circulating blood volume and baroreflex sensitivity. Proc Natl Acad Sci USA. 2006;103(20):7807–12.

    Article  PubMed  CAS  Google Scholar 

  24. Braunwald E, Wagner HN Jr. The pressor effect of the antidiuretic principle of the posterior pituitary in orthostatic hypotension. J Clin Invest. 1956;35(12):1412–8.

    Article  PubMed  CAS  Google Scholar 

  25. Aoyagi T, Birumachi J, Hiroyama M, Fujiwara Y, Sanbe A, Yamauchi J, Tanoue A. Alteration of glucose homeostasis in V1a vasopressin receptor-deficient mice. Endocrinology. 2007;148(5):2075–84.

    Article  PubMed  CAS  Google Scholar 

  26. Aoyagi T, Izumi Y, Hiroyama M, Matsuzaki T, Yasuoka Y, Sanbe A, Miyazaki H, Fujiwara Y, Nakayama Y, Kohda Y, Yamauchi J, Inoue T, Kawahara K, Saito H, Tomita K, Nonoguchi H, Tanoue A. Vasopressin regulates the renin–angiotensin–aldosterone system via V1a receptors in macula densa cells. Am J Physiol Renal Physiol. 2008;295(1):F100–7.

    Article  PubMed  CAS  Google Scholar 

  27. Guillon G, Trueba M, Joubert D, Grazzini E, Chouinard L, Cote M, Payet MD, Manzoni O, Barberis C, Robert M, et al. Vasopressin stimulates steroid secretion in human adrenal glands: comparison with angiotensin-II effect. Endocrinology. 1995;136(3):1285–95.

    Google Scholar 

  28. Perraudin V, Delarue C, Lefebvre H, Do Rego JL, Vaudry H, Kuhn JM. Evidence for a role of vasopressin in the control of aldosterone secretion in primary aldosteronism: in vitro and in vivo studies. J Clin Endocrinol Metab. 2006;91(4):1566–72.

    Article  PubMed  CAS  Google Scholar 

  29. Birumachi J, Hiroyama M, Fujiwara Y, Aoyagi T, Sanbe A, Tanoue A. Impaired arginine-vasopressin-induced aldosterone release from adrenal gland cells in mice lacking the vasopressin V1A receptor. Eur J Pharmacol. 2007;566(1–3):226–30.

    Article  PubMed  CAS  Google Scholar 

  30. Gerber JG, Keller RT, Nies AS. Prostaglandins and renin release: the effect of PGI2, PGE2, and 13, 14-dihydro PGE2 on the baroreceptor mechanism of renin release in the dog. Circ Res. 1979;44(6):796–9.

    PubMed  CAS  Google Scholar 

  31. Jensen BL, Schmid C, Kurtz A. Prostaglandins stimulate renin secretion and renin mRNA in mouse renal juxtaglomerular cells. Am J Physiol. 1996;271(3 Pt 2):F659–69.

    PubMed  CAS  Google Scholar 

  32. Kurtz A, Wagner C. Role of nitric oxide in the control of renin secretion. Am J Physiol. 1998;275(6 Pt 2):F849–62.

    PubMed  CAS  Google Scholar 

  33. Malayan SA, Ramsay DJ, Keil LC, Reid IA. Effects of increases in plasma vasopressin concentration on plasma renin activity, blood pressure, heart rate, and plasma corticosteroid concentration in conscious dogs. Endocrinology. 1980;107(6):1899–904.

    Article  PubMed  CAS  Google Scholar 

  34. Merrill DC, Cowley AW Jr. Chronic effects of vasopressin on plasma renin activity in sodium-restricted dogs. Am J Physiol. 1986;250(3 Pt 2):F460–9.

    PubMed  CAS  Google Scholar 

  35. Schwartz J, Reid IA. Role of the vasoconstrictor and antidiuretic activities of vasopressin in inhibition of renin secretion in conscious dogs. Am J Physiol. 1986;250(1 Pt 2):F92–6.

    PubMed  CAS  Google Scholar 

  36. Arai Y, Fujimori A, Sasamata M, Miyata K. New topics in vasopressin receptors and approach to novel drugs: research and development of conivaptan hydrochloride (YM087), a drug for the treatment of hyponatremia. J Pharmacol Sci. 2009;109(1):53–9.

    Article  PubMed  CAS  Google Scholar 

  37. Zeltser D, Rosansky S, van Rensburg H, Verbalis JG, Smith N. Assessment of the efficacy and safety of intravenous conivaptan in euvolemic and hypervolemic hyponatremia. Am J Nephrol. 2007;27(5):447–57.

    Article  PubMed  CAS  Google Scholar 

  38. Yeates KE, Morton AR. Vasopressin antagonists: role in the management of hyponatremia. Am J Nephrol. 2006;26(4):348–55.

    Article  PubMed  CAS  Google Scholar 

  39. Ghali JK, Koren MJ, Taylor JR, Brooks-Asplund E, Fan K, Long WA, Smith N. Efficacy and safety of oral conivaptan: a V1A/V2 vasopressin receptor antagonist, assessed in a randomized, placebo-controlled trial in patients with euvolemic or hypervolemic hyponatremia. J Clin Endocrinol Metab. 2006;91(6):2145–52.

    Article  PubMed  CAS  Google Scholar 

  40. Decaux G, Soupart A, Vassart G. Non-peptide arginine-vasopressin antagonists: the vaptans. Lancet. 2008;371(9624):1624–32.

    Article  PubMed  CAS  Google Scholar 

  41. Konstam MA, Gheorghiade M, Burnett JC Jr, Grinfeld L, Maggioni AP, Swedberg K, Udelson JE, Zannad F, Cook T, Ouyang J, Zimmer C, Orlandi C. Effects of oral tolvaptan in patients hospitalized for worsening heart failure: the EVEREST Outcome Trial. JAMA. 2007;297(12):1319–31.

    Article  PubMed  CAS  Google Scholar 

  42. Gheorghiade M, Konstam MA, Burnett JC Jr, Grinfeld L, Maggioni AP, Swedberg K, Udelson JE, Zannad F, Cook T, Ouyang J, Zimmer C, Orlandi C. Short-term clinical effects of tolvaptan, an oral vasopressin antagonist, in patients hospitalized for heart failure: the EVEREST Clinical Status Trials. JAMA. 2007;297(12):1332–43.

    Article  PubMed  CAS  Google Scholar 

  43. Ghali JK, Hamad B, Yasothan U, Kirkpatrick P. Tolvaptan. Nat Rev Drug Discov. 2009;8(8):611–2.

    Article  PubMed  CAS  Google Scholar 

  44. Goldsmith SR. Is there a cardiovascular rationale for the use of combined vasopressin V1a/V2 receptor antagonists? Am J Med. 2006;119(7 Suppl 1):S93–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taka-aki Koshimizu.

About this article

Cite this article

Fujiwara, Y., Tanoue, A., Tsujimoto, G. et al. The roles of V1a vasopressin receptors in blood pressure homeostasis: a review of studies on V1a receptor knockout mice. Clin Exp Nephrol 16, 30–34 (2012). https://doi.org/10.1007/s10157-011-0497-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-011-0497-y

Keywords

Navigation