Skip to main content

Advertisement

Log in

Claudins and renal salt transport

  • Review Article
  • The 36th IUPS Satellite Symposium: The Kidney and Hypertension
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Tight junctions (TJs) are the most apical component of junctional complexes and regulate the movement of electrolytes and solutes by the paracellular pathway across epithelia. The defining ultrastructural features of TJs are strands of transmembrane protein particles that adhere to similar strands on adjacent cells. These strands are mainly composed of linearly polymerized integral membrane proteins called claudins. Claudins comprise a multigene family consisting of more than 20 members in mammals. Recent work has shown that claudins form barriers, determined by the paracellular electrical resistance and charge selectivity, and pores in the TJ strands. The paracellular pathways in renal tubular epithelia such as the proximal tubule, which reabsorbs the largest fraction of filtered NaCl and water, are important routes for the transport of electrolytes and water. Their transport characteristics vary among different nephron segments. Multiple claudins are expressed at TJs of individual nephron segments in a nephron segment-specific manner. Among them, claudin-2 is highly expressed at TJs of proximal tubules, which are leaky epithelia. Overexpression and knockdown of claudin-2 in epithelial cell lines, and knockout of the claudin-2 gene in mice, have demonstrated that claudin-2 forms high-conductance cation-selective pores in the proximal tubule. Here, we review the renal physiology of paracellular transport and the physiological roles of claudins in kidney function, especially claudin-2 and proximal tubule paracellular NaCl transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Van Itallie CM, Anderson JM. Claudins and epithelial paracellular transport. Annu Rev Physiol. 2006;68:403–29.

    Article  PubMed  Google Scholar 

  2. Tsukita S, Furuse M, Ito H. Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol. 2001;2:285–93.

    Article  PubMed  CAS  Google Scholar 

  3. Angelow S, Ahlstrom R, Yu ASL. Biology of claudins. Am J Physiol. 2008;295:F867–76.

    Article  CAS  Google Scholar 

  4. Farquhar MG, Palade GE. Junctional complexes in various epithelia. J Cell Biol. 1963;17:375–412.

    Article  PubMed  CAS  Google Scholar 

  5. Powell DW. Barrier function of epithelia. Am J Physiol. 1981;241:G275–88.

    PubMed  CAS  Google Scholar 

  6. Farquhar MG, Palade GE. Cell junctions in amphibian skin. J Cell Biol. 1965;26:263–91.

    Article  PubMed  CAS  Google Scholar 

  7. Staehelin LA. Structure and function of intercellular junctions. Int Rev Cytol. 1974;39:191–283.

    Article  PubMed  CAS  Google Scholar 

  8. Claude P, Goodenough DA. Fracture faces of zonulae occludentes from “tight” and “leaky” epithelia. J Cell Biol. 1973;58:390–400.

    Article  PubMed  CAS  Google Scholar 

  9. Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S, et al. Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol. 1993;123:1777–88.

    Article  PubMed  CAS  Google Scholar 

  10. Balda MS, Whitney JA, Flores C, Gonzalez S, Cereijido M, Matter K. Functional dissociation of paracellular permeability and transepithelial resistance and disruption of the apical-basolateral intramembrane diffusion barrier by expression of a mutant tight junction membrane protein. J Cell Biol. 1996;134:1031–49.

    Article  PubMed  CAS  Google Scholar 

  11. Bamforth SD, Kniesel U, Wolburg H, Engelhardt B, Risau W. A dominant mutant of occludin disrupts tight junction structure and function. J Cell Sci. 1999;112:1879–88.

    PubMed  CAS  Google Scholar 

  12. Saitou M, Fujimoto K, Doi Y, Itoh M, Fujimoto T, Furuse M, et al. Occludin deficient embryonic stem cells can differentiate into polarized epithelial cells bearing tight junctions. J Cell Biol. 1998;141:397–408.

    Article  PubMed  CAS  Google Scholar 

  13. Saitou M, Furuse M, Sasaki H, Schulzke JK, Fromm M, Takano H, et al. Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol Biol Cell. 2000;11:4131–442.

    PubMed  CAS  Google Scholar 

  14. Furuse M, Fujita K, Fujimoto K, Tsukita S. Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol. 1998;141:1539–50.

    Article  PubMed  CAS  Google Scholar 

  15. Furuse M, Sasaki H, Fujimoto K, Tsukita S. A single gene product, claudin-1 or -2, reconstitutes tight junction strands and recruits occludin in fibroblasts. J Cell Biol. 1998;143:391–401.

    Article  PubMed  CAS  Google Scholar 

  16. Sonoda N, Furuse M, Sasaki H, Yonemura S, Katahira J, Horiguchi Y, et al. Clostridium perfringens enterotoxin fragment removes specific claudins from tight junction strands: evidence for direct involvement of claudins in tight junction barrier. J Cell Biol. 1999;147:195–204.

    Article  PubMed  Google Scholar 

  17. Colegio OR, Van Itallie CM, McCrea HJ, Rahner C, Anderson JM. Claudins create charge-selective channels in the paracellular pathway between epithelial cells. Am J Physiol. 2002;283:C142–7.

    CAS  Google Scholar 

  18. Colegio OR, Van Itallie CM, Rahner C, Anderson JM. Claudin extracellular domains determine paracellular charge selectivity and resistance but not tight junction fibril architecture. Am J Physiol. 2003;284:C1346–54.

    CAS  Google Scholar 

  19. Van Itallie CM, Fanning AS, Anderson JM. Reversal of charge selectivity in cation or anion-selective epithelial lines by expression of different claudins. Am J Physiol. 2003;285:F1078–84.

    Google Scholar 

  20. Van Itallie CM, Rahner C, Anderson JM. Regulated expression of claudin-4 decreases paracellular conductance through a selective decrease in sodium permeability. J Clin Invest. 2001;107:1319–27.

    Article  PubMed  Google Scholar 

  21. Van Itallie CM, Holmes J, Bridges A, Gookin JL, Coccaro MR, Proctor W, et al. The density of small tight junction pores varies among cell types and is increased by expression of claudin-2. J Cell Sci. 2008;121:298–305.

    Article  PubMed  Google Scholar 

  22. Alexandre MD, Jeansonne BG, Renegar RH, Tatum R, Chen YH. The first extracellular domain of claudin-7 affects paracellular Cl permeability. Biochem Biophys Res Commun. 2007;357:87–91.

    Article  PubMed  CAS  Google Scholar 

  23. Alexandre MD, Lu Q, Chen YH. Overexpression of claudin-7 decreases the paracellular Cl conductance and increases the paracellular Na+ conductance in LLC-PK1 cells. J Cell Sci. 2005;118:2683–93.

    Article  PubMed  CAS  Google Scholar 

  24. Simon DB, Lu Y, Choate KA, Velazquez H, Al-Sabban E, Praga M, et al. Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science. 1999;285:103–6.

    Article  PubMed  CAS  Google Scholar 

  25. Hou J, Shan Q, Wang T, Gomes AS, Yan Q, Paul DL, et al. Transgenic RNAi depletion of claudin-16 and the renal handling of magnesium. J Biol Chem. 2007;282:17114–22.

    Article  PubMed  CAS  Google Scholar 

  26. Imai M. Function of the thin ascending limb of Henle of rats and hamsters in vitro. Am J Physiol. 1977;1:F201–9.

    Google Scholar 

  27. Sansom SC, Weinman EJ, O’Neil RG. Microelectrode assessment of chloride-conductive properties of cortical collecting duct. Am J Physiol. 1984;247:F291–302.

    PubMed  CAS  Google Scholar 

  28. Kiuchi-Saishin Y, Gotoh S, Furuse M, Takasuga A, Tano Y, Tsukita S. Differential expression patterns of claudins, tight junction membrane proteins, in mouse nephron segments. J Am Soc Nephrol. 2002;13:875–86.

    PubMed  CAS  Google Scholar 

  29. Enck AH, Berger UV, Yu ASL. Claudin-2 is selectively expressed in proximal nephron in mouse kidney. Am J Physiol. 2001;281:F966–74.

    CAS  Google Scholar 

  30. Van Itallie CM, Rogan S, Yu A, Vidal LS, Holmes J, Anderson JM. Two splice variants of claudin-10 in the kidney create paracellular pores with different ion selectivities. Am J Physiol. 2006;291:F1288–99.

    Article  Google Scholar 

  31. Li WY, Huey CL, Yu ASL. Expression of claudin-7 and -8 along the mouse nephron. Am J Physiol. 2004;286:F1063–71.

    Article  CAS  Google Scholar 

  32. Angelow S, El-Husseini R, Kanzawa SA, Yu ASL. Renal localization and function of the tight junction protein, claudin-19. Am J Physiol. 2007;293:F166–77.

    Article  CAS  Google Scholar 

  33. Konrad M, Schaller A, Seelow D, Pandey AV, Waldegger S, Lesslauer A, et al. Mutations in the tight-junction gene claudin 19 (CLDN19) are associated with renal magnesium wasting, renal failure, and severe ocular involvement. Am J Hum Genet. 2006;79:949–57.

    Article  PubMed  CAS  Google Scholar 

  34. Rector FC Jr. Sodium, bicarbonate, and chloride absorption by the proximal tubule. Am J Physiol. 1983;244:F4611–711.

    Google Scholar 

  35. Liu FY, Cogan MG. Axial heterogeneity in the rat proximal convoluted tubule. I. Bicarbonate, chloride, and water transport. Am J Physiol. 1984;247:F816–21.

    PubMed  CAS  Google Scholar 

  36. Berry CA, Rector FC Jr. Relative sodium-to-chloride permeability in the proximal convoluted tubule. Am J Physiol. 1978;4:F592–604.

    Google Scholar 

  37. Schafer JA, Troutman SL, Andreoli TE. Volume reabsorption, transepithelial potential differences, and ionic permeability properties in mammalian superficial proximal straight tubules. J Gen Physiol. 1974;64:582–607.

    Article  PubMed  CAS  Google Scholar 

  38. Jacobson HR, Kokko JP. Intrinsic differences in various segments of the proximal convoluted tubule. J Clin Invest. 1976;57:818–25.

    Article  PubMed  CAS  Google Scholar 

  39. Kawamura S, Imai M, Seldin DW, Kokko JP. Characteristics of salt and water transport in superficial and juxtamedullary straight segments of proximal tubules. J Clin Invest. 1975;55:1269–77.

    Article  PubMed  CAS  Google Scholar 

  40. Muto S, Hata M, Taniguchi J, Tsuruoka S, Moriwaki K, Saitou M, et al. Claudin-2-deficient mice are defective in the leaky and cation-selective paracellular permeability properties of renal proximal tubules. Proc Natl Acad Sci USA. 2010;107:8011–6.

    Article  PubMed  CAS  Google Scholar 

  41. Furuse M, Furuse K, Sasaki H, Tsukita S. Conversion of zonulae occludentes from tight to leaky strand type by introducing claudin-2 into MDCK I cells. J Cell Biol. 2001;153:263–72.

    Article  PubMed  CAS  Google Scholar 

  42. Amasheh S, Meiri N, Gitter AH, Schoneberg T, Mankertz J, Schulzke JD, et al. Claudin-2 expression induces cation-selective channels in tight junctions of epithelial cells. J Cell Sci. 2002;115:4969–76.

    Article  PubMed  CAS  Google Scholar 

  43. Yu ASL, Cheng MH, Angelow S, Gunzel D, Kanzawa SA, Schneeberger EE, et al. Molecular basis for cation selectivity in claudin-2-based paracellular pores: identification of an electrostatic interacting site. J Gen Physiol. 2009;133:111–27.

    Article  PubMed  CAS  Google Scholar 

  44. Hou J, Gomes AS, Paul DL, Goodenough DA. Study of claudin function by RNA interference. J Biol Chem. 2006;281:36117–23.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to express our sincere gratitude and deep appreciation for the support and encouragement from the late Prof. Shoichiro Tsukita, without which this research would have been impossible. This work was funded by Grants-in-Aid from the Ministry of Education, Science, Culture, Sports, Science, and Technology of Japan and by a grant from the Salt Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeaki Muto.

About this article

Cite this article

Muto, S., Furuse, M. & Kusano, E. Claudins and renal salt transport. Clin Exp Nephrol 16, 61–67 (2012). https://doi.org/10.1007/s10157-011-0491-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-011-0491-4

Keywords

Navigation