Skip to main content

Advertisement

Log in

Slit diaphragm dysfunction in proteinuric states: identification of novel therapeutic targets for nephrotic syndrome

  • Review article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Several recent studies have demonstrated that the slit diaphragm of the glomerular epithelial cell (podocyte) is the structure likely to be the principal barrier in the glomerular capillary wall. Nephrin identified as a gene product mutated in congenital nephrotic syndrome located at the outer leaflet of plasma membranes of the slit diaphragm. The anti-nephrin antibody is capable of inducing massive proteinuria, which indicates that nephrin is a key functional molecule in the slit diaphragm. Expression of nephrin was reduced in glomeruli of minimal change nephrotic syndrome. Some recent studies demonstrated that podocin, CD2-associated protein and NEPH1 are also functional molecules in the slit diaphragm, and their expressions are altered in membranous nephropathy and also in focal glomerulosclerosis. These observations suggested that the alteration of the molecular arrangement in the slit diaphragm is involved in the development of proteinuria in several kinds of glomerular diseases. Recent studies of our group have demonstrated that type 1 receptor-mediated angiotensin II action reduced the expression of the slit diaphragm-associated molecules and that type 1 receptor blockade ameliorated proteinuria by preventing the function of angiotensin II on the slit diaphragm. By the subtraction hybridization techniques using glomerular cDNA of normal and proteinuric rats, we detected that synaptic vesicle protein 2B and ephrin B1 are involved in the maintenance of the barrier function of the slit diaphragm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Pavenstadt H, Kriz W, Kretzler M. Cell biology of the glomerular podocyte. Physiol Rev. 2003;83:253–307.

    Article  CAS  PubMed  Google Scholar 

  2. Kawachi H, Shimizu F. Molecular composition and function of the slit diaphragm: nephrin, the molecule responsible for proteinuria. Clin Exp Nephrol. 2000;4:161–72.

    Article  CAS  Google Scholar 

  3. Mundel P, Shankland SJ. Podocyte biology and response to injury. J Am Soc Nephrol. 2002;13:3005–15.

    Article  PubMed  Google Scholar 

  4. Arakawa M. A scanning electron microscopy of the glomerulus of normal and nephrotic rats. Lab Invet. 1970;23:489–97.

    CAS  Google Scholar 

  5. Yamada E. The fine structure of the renal glomerulus of the mouse. J Biophys Biochem Cytol. 1955;1:551–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Farquhar MG, Wissig SL, Palade GE. Glomerular permeability I. Ferritin transfer across the normal glomerular capillary wall. J Exp Med. 1961;113:47–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rodewald R, Karnovsky MJ. Porous substructure of the glomerular slit diaphragm in the rat and mouse. J Cell Biol. 1974;60:423–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Orikasa M, Matsui K, Oite T, Shimizu F. Massive proteinuria induced in rats by a single intravenous injection of a monoclonal antibody. J Immunol. 1988;141:807–14.

    CAS  PubMed  Google Scholar 

  9. Kestilä M, Lenkkeri U, Männikkö M, Lamerdin J, McCready P, Putaala H, et al. Positionally cloned gene for a novel glomerular protein-nephrin- is mutated in congenital nephrotic syndrome. Mol Cell. 1998;1:572–8.

    Article  Google Scholar 

  10. Ruotsalainen V, Ljungberg P, Wartiovaara J, Lenkkeri U, Kestilä M, Jalanko H, et al. Nephrin is specifically located at the site of the slit diaphragm of glomerular podocytes. Proc Natl Acad Sci USA. 1999;96:7962–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Boute N, Gribouval O, Roselli S, Benessy F, Lee H, Fuchshuber A, et al. NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resisitant nephrotic syndrome. Nature Genet. 2000;24:349–54.

    Article  CAS  PubMed  Google Scholar 

  12. Shih NY, Li J, Karpitskii V, Nguyen A, Dustin ML, Kanagawa O, et al. Congenital nephrotic syndrome in mice lacking CD2-associated protein. Science. 1999;286:312–5.

    Article  CAS  PubMed  Google Scholar 

  13. Shih NY, Li J, Karpitskii V, Nguyen A, Dustin ML, Kanagawa O, et al. Proteinuria and perinatal lethality in mice lacking NEPH1, a novel protein with homology to NEPHRIN. Mol Cell Biol. 2001;21:4829–36.

    Article  Google Scholar 

  14. Huber TB, Schmidts M, Gerke P, Schermer B, Zahn A, Hartleben B, et al. NEPH1 difines a novel family of podocin-interacting proteins. FASEB J. 2003;17:115–7.

    Article  PubMed  Google Scholar 

  15. Winn MP, Conlon PJ, Lynn KL, Farrington MK, Creazzo T, Hawkins AF, et al. A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science. 2005;308:1801–4.

    Article  CAS  PubMed  Google Scholar 

  16. Reiser J, Polu KR, Möller CC, Kenlan P, Altintas MM, Wei C, et al. TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat Genet. 2005;37:739–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ahola H, Wang S-X, Luimula P, Solin M-L, Holzman LB, Holthofer H. Cloning and expression of the rat nephrin homologue. Am J Pathol. 1999;155:907–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kawachi H, Koike H, Kurihara H, Yaoita E, Orikasa M, Shia MA, et al. Cloning of rat nephrin: expression in developing glomeruli and in proteinuric states. Kidney Int. 2000;57:1949–61.

    Article  CAS  PubMed  Google Scholar 

  19. Furness PN, Hall LL, Shaw JA, Pringle JH. Glomerular expression of nephrin is decreased in acquired human nephrotic syndrome. Nephrol Dial Transplant. 1999;14:1234–7.

    Article  CAS  PubMed  Google Scholar 

  20. Kawachi H, Koike H, Kurihara H, Sakai T. Shimizu F: Cloning of rat homologue of podocin: expression in proteinuric states and in developing glomeruli. J. Am Soc Nephrol. 2003;14:46–56.

    Article  CAS  PubMed  Google Scholar 

  21. Doublier S, Ruotsalainen V, Salvidio G, Lupia E, Biancone L, Conaldi PG, et al. Nephrin redistribution on podocytes is a potential mechanism for proteinuria in patients with primary acquired nephrotic syndrome. Am J Pathol. 2001;158:1723–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Horinouchi I, Nakazato H, Kawano T, Iyama K, Furuse A, Arizono K, et al. In situ evaluation of podocin in normal and glomerular diseases. Kidney Int. 2003;64:2092–9.

    Article  CAS  PubMed  Google Scholar 

  23. Wernerson A, Dunér F, Pettersson E, Widholm SM, Berg U, Ruotsalainen V, et al. Altered ultrastructural distribution of nephrin in minimal change nephrotic syndrome. Nephrol Dial Transplant. 2003;18:70–6.

    Article  CAS  PubMed  Google Scholar 

  24. Yuan H, Takeuchi E, Taylor GA, McLaughlin M, Brown D, Salant DJ. Nephrin dissociates from actin, and its expression is reduced in early experimental membranous nephropathy. J Am Soc Nephrol. 2002;13:946–56.

    CAS  PubMed  Google Scholar 

  25. Nakatsue T, Koike H, Han GD, Suzuki K, Miyauchi N, Yuan H, et al. Nephrin and podocin dissociate at the onset of proteinuria in experimental membranous nephropathy. Kidney Int. 2005;67:2239–53.

    Article  CAS  PubMed  Google Scholar 

  26. Otaki Y, Miyauchi N, Higa M, Takada A, Kuroda T, Gejyo F, et al. The dissociation of NEPH1 from nephrin is involved in the development of rat model of focal segmental glomerulosclerosis. Am J Physiol Renal Physiol. 2008. in press.

  27. Matsusaka T, Xin J, Niwa S, Kobayashi K, Akatsuka A, Hashizume H, et al. Genetic engineering of glomerular sclerosis in the mouse via control of onset and severity of podocyte-specific injury. J Am Soc Nephrol. 2005;16:1013–23.

    Article  CAS  PubMed  Google Scholar 

  28. Sawai K, Mori K, Mukoyama M, Sugawara A, Suganami T, Koshikawa M, et al. Angiogenic protein Cyr61 is expressed by podocytes in anti-Thy-1 glomerulonephritis. J Am Soc Nephrol. 2003;14:1154–63.

    Article  CAS  PubMed  Google Scholar 

  29. Morioka Y, Koike H, Ikezumi Y, Ito Y, Oyanagi A, et al. Podocyte injuries exacerbate mesangial proliferative glomerulonephritis. Kidney Int. 2001;60:2192–204.

    Article  CAS  PubMed  Google Scholar 

  30. Han GD, Koike H, Nakatsue T, Suzuki K, Yoneyama H, Narumi S, et al. IFN-inducible protein-10 has a differential role in podocyte during Thy 1.1 glomerulonephritis. J Am Soc Nephrol. 2003;14:3111–26.

    Article  CAS  PubMed  Google Scholar 

  31. Hara M, Yanagihara T, Takada T, Itoh M, Matsuno M, Yamamoto T, et al. Urinary excretion of podocytes reflects disease activity in children with glomerulonephritis. Nephron. 1998;18:35–41.

    CAS  Google Scholar 

  32. Maschio G, Alberti D, Janin G, Locatelli F, Mann JF, Motolese M, et al. Effect of the angiotensin-converting-enzyme inhibitor benazepril on the progression of chronic renal insufficiency. N Eng J Med. 1996;334:939–45.

    Article  CAS  Google Scholar 

  33. Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE, Parving HH, et al. RENAAL study investigators:effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001;345:861–9.

    Article  CAS  PubMed  Google Scholar 

  34. Benigni A, Tomasoni S, Gagliardini E, Zoja C, Grunkemeyer JA, Kalluri R, et al. Blocking angiotensin II synthesis/activity preserves glomerular nephrin in rats with severe nephrosis. J Am Soc Nephrol. 2001;12:941–8.

    CAS  PubMed  Google Scholar 

  35. Bonnet F, Cooper ME, Kawachi H, Allen TJ, Boner G, Cao Z. Irbesartan normalises the deficiency in glomerular nephrin expression in a model of diabetes and hypertension. Diabetologia. 2001;44:874–7.

    Article  CAS  PubMed  Google Scholar 

  36. Kawachi H, Kurihara H, Topham PS, Brown D, Shia MA, Orikasa M, et al. Slit diaphragm-reactive nephritogenic MAb 5-1-6 alters expression of ZO-1 in rat podocytes. Am J Physiol. 1997;273:F984–93.

    CAS  PubMed  Google Scholar 

  37. Suzuki K, Han GD, Miyauchi N, Hashimoto T, Nakatsue T, Fujioka Y, et al. Angiotensin II type 1 and type 2 receptors play opposite roles in regulating the barrier function of kidney glomerular capillary wall. Am J Pathol. 2007;170:1841–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Miyauchi N, Saito A, Karasawa T, Harita Y, Suzuki K, Koike H, et al. Synaptic vesicle protein 2B is expressed in podocyte, and its expression is altered in proteinuric glomeruli. J Am Soc Nephrol. 2006;17:2748–59.

    Article  CAS  PubMed  Google Scholar 

  39. Hashimoto T, Karasawa T, Saito A, Miyauchi N, Han GD, Hayasaka K, et al. Ephrin-B1 localizes at the slit diaphragm of the glomerular podocyte. Kidney Int. 2007;72:954–64.

    Article  CAS  PubMed  Google Scholar 

  40. Janz R, Goda Y, Geppert M, Missler M, Sudhof TC. SV2A and SV2B function as redundant Ca2+ regulators in neurotransmitter release. Neuron. 1999;24:1003–16.

    Article  CAS  PubMed  Google Scholar 

  41. Heese K, Nagai Y, Sawada T. Identification of a new synaptic vesicle protein 2B mRNA transcript which is up-regulated in neurons by amyloid peptide fragment (1–42). Biochem Biophys Res Commun. 2001;289:924–8.

    Article  CAS  PubMed  Google Scholar 

  42. Lazzell DR, Belizaire R, Thakur P, Sherry DM, Janz R. SV2B regulates synaptotagmin 1 by direct interaction. J Biol Chem. 2004;279:52124–31.

    Article  CAS  PubMed  Google Scholar 

  43. Wang MM, Janz R, Belizaire R, Frishman LJ, Sherry DM. Differential distribution and developmental expression of synaptic vesicle protein 2 isoforms in the mouse retina. J Comp Neurol. 2003;460:106–22.

    Article  CAS  PubMed  Google Scholar 

  44. Clegg N, Ferguson C, True LD, Arnold H, Moorman A, Quinn JE, et al. Molecular characterization of prostatic small-cell neuroendocrine carcinoma. Prostate. 2003;55:55–64.

    Article  CAS  PubMed  Google Scholar 

  45. Hayashi M, Yamamoto A, Yatsushiro S, Yamada H, Futai M, Yamaguchi A, et al. Synaptic vesicle protein SV2B, but not SV2A, is predominantly expressed and associated with microvesicles in rat pinealocytes. J Neurochem. 1998;71:356–65.

    Article  CAS  PubMed  Google Scholar 

  46. Rastaldi MP, Armelloni S, Berra S, Li M, Pesaresi M, Poczewski H, et al. Glomerular podocytes possess the synaptic vesicle molecule Rab3A and its specific effector rabphilin-3a. Am J Pathol. 2003;163:889–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Eph Nomenclature Committee. Unified nomenclature for Eph family receptors and their ligands, the ephrins. Cell. 1997;90:403–4.

    Article  Google Scholar 

  48. Kullander K, Klein R. Mechanisms and functions of Eph and ephrin signaling. Nat Rev Mol Cell Biol. 2002;3:475–86.

    Article  CAS  PubMed  Google Scholar 

  49. Pasquale EB. Eph receptor signalling casts a wide net on cell behaviour. Nat Rev Mol Cell Biol. 2005;6:462–75.

    Article  CAS  PubMed  Google Scholar 

  50. Martinez A, Soriano E. Functions of ephrin/Eph interactions in the development of the nervous system: emphasis on the hippocampal system. Brain Res Rev. 2005;49:211–26.

    Article  CAS  PubMed  Google Scholar 

  51. Poliakov A, Cotrina M, Wilkinson DG. Diverse roles of eph receptors and ephrins in the regulation of cell migration and tissue assembly. Dev Cell. 2002;7:465–80.

    Article  Google Scholar 

  52. Cheng N, Brantley DM, Chen J. The ephrins and Eph receptors in angiogenesis. Cytokine Growth Factor Rev. 2002;13:75–85.

    Article  CAS  PubMed  Google Scholar 

  53. Eph Nomenclature Committee. Unified nomenclature for Eph family receptors and their ligands, the ephrins. Cell. 1997;90:403–4.

    Article  Google Scholar 

  54. Kullander K, Klein R. Mechanisms and functions of Eph and ephrin signaling. Nat Rev Mol Cell Biol. 2002;3:475–86.

    Article  CAS  PubMed  Google Scholar 

  55. Pasquale EB. Eph receptor signalling casts a wide net on cell behaviour. Nat Rev Mol Cell Biol. 2005;6:462–75.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Kawachi.

Additional information

Presented at the 36th Eastern Regional Meeting of the Japanese Society of Nephrology.

About this article

Cite this article

Kawachi, H., Suzuki, K., Miyauchi, N. et al. Slit diaphragm dysfunction in proteinuric states: identification of novel therapeutic targets for nephrotic syndrome. Clin Exp Nephrol 13, 275–280 (2009). https://doi.org/10.1007/s10157-009-0162-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-009-0162-x

Keywords

Navigation