Skip to main content
Log in

Albumin thiol oxidation and serum protein carbonyl formation are progressively enhanced with advancing stages of chronic kidney disease

  • Original Article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

Oxidative stress is enhanced in advanced chronic kidney disease (CKD) patients and recognized as a main contributor to cardiovascular disease. Carbonyl stress is also known to be enhanced in advanced CKD; however the precise relationship between oxidative stress and carbonyl stress is not clear. The aim of this study was to investigate potential relationships between oxidative stress, carbonyl stress, and renal function among predialysis patients with CKD.

Methods

A total of 32 predialysis CKD patients (22 male, 10 female) were divided into four groups according to their values for creatinine clearance (Ccr) (group A, ≥60 ml/min; group B, 45–59 ml/min; group C, 30–44 ml/min; group D, ≤29 ml/min). As main markers of oxidative and carbonyl stresses, the redox state of Cys-34 (free thiol group) of human serum albumin [HSA(Cys-34)-redox] and the carbonyl content of serum proteins were employed, respectively.

Results

The values for the fraction of both reversibly oxidized HSA [f(HNA-1)] and irreversibly oxidized HSA [f(HNA-2)] significantly increased with a decrease in renal function (group A, 21.0 ± 3.4 and 1.8 ± 0.3%; group D, 31.1 ± 4.1 and 2.7 ± 0.9%, respectively). The value for carbonyl content also significantly increased with a decrease in renal function (group A, 0.7 ± 0.1 nmol/mg protein; group D, 1.1 ± 0.2 nmol/mg protein). There was a significant positive correlation between carbonyl content and the f(HNA-2) value, while such a correlation was not observed between carbonyl content and the f(HNA-1) value, suggesting that there is a close relationship between serum protein carbonylation and irreversible albumin thiol oxidation.

Conclusions

There is a close relationship between oxidative stress and carbonyl stress and these are enhanced in correlation with the level of renal dysfunction among predialysis CKD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351:1296–305.

    Article  CAS  PubMed  Google Scholar 

  2. Ninomiya T, Kiyohara Y, Kubo M, et al. Chronic kidney disease and cardiovascular disease in a general Japanese population: the Hisayama study. Kidney Int. 2005;68:228–36.

    Article  PubMed  Google Scholar 

  3. Nakayama M, Metoki H, Terawaki H, et al. Kidney dysfunction as a risk factor for first symptomatic stroke events in a general Japanese population-the Ohasama study. Nephrol Dial Transplant. 2007;22:1910–5.

    Article  PubMed  Google Scholar 

  4. Witko-Sarsat V, Friedlander M, Khoa TN, et al. Advanced oxidation protein products as novel mediators of inflammation and monocyte activation in chronic renal failure. J Immunol. 1998;161:2524–32.

    CAS  PubMed  Google Scholar 

  5. Terawaki H, Yoshimura K, Hasegawa T, et al. Oxidative stress is enhanced in correlation with renal dysfunction: examination with the redox state of albumin. Kidney Int. 2004;66:1988–93.

    Article  CAS  PubMed  Google Scholar 

  6. Yilmaz MI, Saglam M, Caglar K, et al. The determinants of endothelial dysfunction in CKD: oxidative stress and asymmetric dimethylarginine. Am J Kidney Dis. 2006;47:42–50.

    Article  CAS  PubMed  Google Scholar 

  7. Dounousi E, Papavasiliou E, Makedou A, et al. Oxidative stress is progressively enhanced with advancing stages of CKD. Am J Kidney Dis. 2006;48:752–60.

    Article  CAS  PubMed  Google Scholar 

  8. Boaz M, Smetana S, Weinstein T, et al. Secondary prevention with antioxidants of cardiovascular disease in endstage renal disease (SPACE): randomized placebo-controlled trial. Lancet. 2000;356:1213–8.

    Article  CAS  PubMed  Google Scholar 

  9. Tepel M, van der Giet M, Statz M, Jankowski J, Zidek W. The antioxidant acetylcysteine reduces cardiovascular events in patients with end-stage renal failure: a randomized, controlled trial. Circulation. 2003;107:992–5.

    Article  CAS  PubMed  Google Scholar 

  10. Lonn EM, Yusuf S, Dzavik V, et al. Effects of ramipril and vitamin E on atherosclerosis: the study to evaluate carotid ultrasound changes in patients treated with ramipril and vitamin E (SECURE). Circulation. 2001;103:919–25.

    Article  CAS  PubMed  Google Scholar 

  11. Nanayakkara PWB, van Guldener C, ter Wee PM, et al. Effect of a treatment strategy consisting of pravastatin, vitamin E, and homocysteine lowering on carotid intima-media thickness, endothelial function, and renal function in patients with mild to moderate chronic kidney disease. Arch Intern Med. 2007;167:1262–70.

    Article  CAS  PubMed  Google Scholar 

  12. Oberg BP, McMenamin E, Lucas FL, et al. Increased prevalence of oxidant stress and inflammation in patients with moderate to severe chronic kidney disease. Kidney Int. 2004;65:1009–16.

    Article  PubMed  Google Scholar 

  13. Agarwal R. Chronic kidney disease is associated with oxidative stress independent of hypertension. Clin Nephrol. 2004;61:377–83.

    Article  CAS  PubMed  Google Scholar 

  14. Miyata T, van Ypersele de Strihou C, Kurokawa K, Baynes JW. Alterations in nonenzymatic biochemistry in uremia: origin and significance of “carbonyl stress” in long-term uremic complications. Kidney Int. 1999;55:389–99.

    Article  CAS  PubMed  Google Scholar 

  15. Peters T Jr. All about Albumin. Biochemistry, genetics, and medical applications. New York: Academic Press Inc; 1996. p. 9–75.

    Google Scholar 

  16. Sogami M, Nagoka S, Era S, Honda M, Noguchi K. Resolution of mercapt- and non-mercaptalbumin by high-performance liquid chromatography. Int J Peptide Protein Res. 1984;24:96–103.

    Article  CAS  Google Scholar 

  17. Sogami M, Era S, Nagaoka S, et al. HPLC-studies on nonmercapt-mercapt conversion of human serum albumin. Int J Peptide Protein Res. 1985;25:398–402.

    Article  CAS  Google Scholar 

  18. Era S, Hamaguchi T, Sogami M, et al. Further studies on the resolution of human mercapt- and non-mercaptalbumin and on human serum albumin in the elderly by high-performance liquid chromatography. Int J Peptide Protein Res. 1988;31:435–42.

    Article  CAS  Google Scholar 

  19. Era S, Kuwata K, Imai H, Nakamura K, Hayashi T, Sogami M. Age-related change in redox state of human serum albumin. Biochim Biophys Acta. 1995;1247:12–6.

    Article  PubMed  Google Scholar 

  20. Imai H, Hayashi T, Negawa T, et al. Strenuous exercise-induced change in redox state of human serum albumin during intensive kendo training. Jpn J Physiol. 2002;52:135–40.

    Article  CAS  PubMed  Google Scholar 

  21. Sogami M, Era S, Nagaoka S, et al. High-performance liquid chromatographic studies on non-mercapt ↔ mercapt conversion of human serum albumin. II. J Chromatogr. 1985;332:19–27.

    Article  CAS  PubMed  Google Scholar 

  22. Fukushima H, Miwa Y, Shiraki M, et al. Oral branched-chain amino acid supplementation improves the oxidized/reduced albumin ratio in patients with liver cirrhosis. Hepatol Res. 2007;37:765–70.

    Article  CAS  PubMed  Google Scholar 

  23. Soejima A, Kaneda F, Manno S, et al. Useful markers for detecting decreased serum antioxidant activity in hemodialysis patients. Am J Kideny Dis. 2002;39:1040–6.

    Article  CAS  PubMed  Google Scholar 

  24. Soejima A, Matsuzawa N, Hayashi T, et al. Alteration of redox state of human serum albumin before and after hemodialysis. Blood Purif. 2004;22:525–9.

    Article  CAS  PubMed  Google Scholar 

  25. Terawaki H, Matsuyama Y, Era S, et al. Elevated oxidative stress measured as albumin redox state in continuous ambulatory peritoneal dialysis patients correlates with small uraemic solutes. Nephrol Dial Transplant. 2007;22:968.

    Article  PubMed  Google Scholar 

  26. Terawaki H, Nakayama K, Matsuyama Y, et al. Dialyzable uremic solutes contribute to enhanced oxidation of serum albumin in regular hemodialysis patients. Blood Purif. 2007;25:274–9.

    Article  CAS  PubMed  Google Scholar 

  27. Suzuki E, Yasuda K, Takeda N, et al. Increased oxidized form of serum albumin in patients with diabetes mellitus. Diabetes Res Clin Pract. 1992;18:153–8.

    Article  CAS  PubMed  Google Scholar 

  28. Hayakawa A, Kuwata K, Era S, et al. Alteration of redox state of human serum albumin in patients under anesthesia and invasive surgery. J Chromatogr B. 1997;698:27–33.

    Article  CAS  Google Scholar 

  29. Hayashi T, Era S, Kawai K, et al. Observation for redox state of human serum and aqueous humor albumin from patients with senile cataract. Pathophysiology. 2000;6:237–43.

    Article  CAS  Google Scholar 

  30. Tomida M, Ishimaru J, Murayama K, et al. Intra-articular oxidative state correlated with the pathogenesis of disorders of the temporomandibular joint. Br J Oral Maxillofac Surg. 2004;42:405–9.

    Article  CAS  PubMed  Google Scholar 

  31. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16:31–41.

    Article  CAS  PubMed  Google Scholar 

  32. National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis. 2002;39(suppl 1):S1–266.

    Google Scholar 

  33. Chauhan DP, Gupta PH, Nampoothiri MRN, Singhal PC, Chugh KS, Nair CR. Determination of erythrocyte superoxide dismutase, catalase, glucose-6-phosphate dehydrogenase, reduced glutathione and malonyldialdehyde in uremia. Clin Chim Acta. 1982;123:153–9.

    Article  CAS  PubMed  Google Scholar 

  34. Richard MJ, Arnaud J, Jurkovitz C, et al. Trace elements and lipid peroxidation abnormalities in patients with chronic renal failure. Nephron. 1991;57:10–5.

    Article  CAS  PubMed  Google Scholar 

  35. Shurtz-Swirski R, Mashiach E, Kristal B, Shkolnik T, Shasha SM. Antioxidant enzymes activity in polymorphonuclear leukocytes in chronic renal failure. Nephron. 1995;71:176–9.

    Article  CAS  PubMed  Google Scholar 

  36. Mimic-Oka J, Simic T, Djukanovic L, Reljic Z, Davicevic Z. Alteration in plasma antioxidant capacity in various degrees of chronic renal failure. Clin Nephrol. 1999;51:233–41.

    CAS  PubMed  Google Scholar 

  37. Martin-Mateo MC, Sánchez-Portugal M, Iglesias S, de Paula A, Bustamante J. Oxidative stress in chronic renal failure. Ren Fail. 1999;21:155–67.

    Article  CAS  PubMed  Google Scholar 

  38. Wratten ML, Sereni L, Tetta C. Oxidation of albumin is enhanced in the presence of uremic toxins. Ren Fail. 2001;23:563–71.

    Article  CAS  PubMed  Google Scholar 

  39. Hou FF, Ren H, Owen WF Jr, et al. Enhanced expression of receptor for advanced glycation end products in chronic kidney disease. J Am Soc Nephrol. 2004;15:1889–96.

    Article  CAS  PubMed  Google Scholar 

  40. Stauber RE, Oettl K, Stadlbauer V, Greilberger J, Krisper P, Lackner C. Redox state of albumin and carbonyl content of proteins are altered in acute-on-chronic liver failure. Hepatology. 2006;44(suppl 1):364.

    Google Scholar 

  41. Levey AS, Coresh J, Greene T, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med. 2006;145:247–54.

    Article  CAS  PubMed  Google Scholar 

  42. Rule AD, Jacobsen SJ, Schwartz GL, et al. A comparison of serum creatinine-based methods for identifying chronic kidney disease in hypertensive individuals and their siblings. Am J Hypertens. 2006;19:608–14.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiichi Era.

About this article

Cite this article

Matsuyama, Y., Terawaki, H., Terada, T. et al. Albumin thiol oxidation and serum protein carbonyl formation are progressively enhanced with advancing stages of chronic kidney disease. Clin Exp Nephrol 13, 308–315 (2009). https://doi.org/10.1007/s10157-009-0161-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-009-0161-y

Keywords

Navigation