Skip to main content

Advertisement

Log in

Mechanisms of immune-deposit formation and the mediation of immune renal injury

  • REVIEW ARTICLE
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

The passive trapping of preformed immune complexes is responsible for some forms of glomerulonephritis that are associated with mesangial or subendothelial deposits. The biochemical characteristics of circulating antigens play important roles in determining the biologic activity of immune complexes in these cases. Examples of circulating immune complex diseases include the classic acute and chronic serum sickness models in rabbits, and human lupus nephritis. Immune deposits also form “in situ”. In situ immune deposit formation may occur at subepithelial, subendothelial, and mesangial sites. In situ immune-complex formation has been most frequently studied in the Heymann nephritis models of membranous nephropathy with subepithelial immune deposits. While the autoantigenic target in Heymann nephritis has been identified as megalin, the pathogenic antigenic target in human membranous nephropathy had been unknown until the recent identification of neutral endopeptidase as one target. It is likely that there is no universal antigen in human membranous nephropathy. Immune complexes can damage glomerular structures by attracting circulating inflammatory cells or activating resident glomerular cells to release vasoactive substances, cytokines, and activators of coagulation. However, the principal mediator of immune complex-mediated glomerular injury is the complement system, especially C5b-9 membrane attack complex formation. C5b-9 inserts in sublytic quantities into the membranes of glomerular cells, where it produces cell activation, converting normal cells into resident inflammatory effector cells that cause injury. Excessive activation of the complement system is normally prevented by a series of circulating and cell-bound complement regulatory proteins. Genetic deficiencies or mutations of these proteins can lead to the spontaneous development of glomerular disease. The identification of specific antigens in human disease may lead to the development of fundamental therapies. Particularly promising future therapeutic approaches include selective immunosuppression and interference in complement activation and C5b-9-mediated cell injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G Doekes LA van Es MR Daha (1984) ArticleTitleBinding and activation of the first complement component by soluble immune complexes: effect of complex size and composition Scand J Immunol 19 99–110 Occurrence Handle6701474

    PubMed  Google Scholar 

  2. GR Gallo T Caulin-Glaser ME Lamm (1981) ArticleTitleCharge of circulating immune complexes as a factor in glomerular basement membrane localization in mice J Clin Invest 67 1305–13 Occurrence Handle6453132

    PubMed  Google Scholar 

  3. VJ Gauthier M Mannik GE Striker (1982) ArticleTitleEffect of cationized antibodies in preformed immune complexes on deposition and persistence in renal glomeruli J Exp Med 156 766–77 Occurrence Handle10.1084/jem.156.3.766 Occurrence Handle7108443

    Article  PubMed  Google Scholar 

  4. YS Kanwar MG Farquhar (1979) ArticleTitleAnionic sites in the glomerular basement membrane. In vivo and in vitro localization to the laminae rarae by cationic probes J Cell Biol 81 137–53 Occurrence Handle10.1083/jcb.81.1.137 Occurrence Handle90048

    Article  PubMed  Google Scholar 

  5. HG Rennke RS Cotran MA Venkatachalam (1975) ArticleTitleRole of molecular charge in glomerular permeability. Tracer studies with cationized ferritins J Cell Biol 67 638–46 Occurrence Handle10.1083/jcb.67.3.638 Occurrence Handle1202017

    Article  PubMed  Google Scholar 

  6. TM Coimbra MA Gouveia L Ebisui JE Barbosa JJ Lachat IF de Carvalho (1985) ArticleTitleInfluence of antigen charge in the pathogenicity of immune complexes in rats Br J Exp Pathol 66 595–603 Occurrence Handle2415147

    PubMed  Google Scholar 

  7. MA Michelin LS Crott AI Assis-Pandochi TM Coimbra JE Teixeira JE Barbosa (2002) ArticleTitleInfluence of the electric charge of the antigen and the immune complex (IC) lattice on the IC activation of human complement Int J Exp Pathol 83 105–10 Occurrence Handle10.1046/j.1365-2613.2002.00224.x Occurrence Handle12084047

    Article  PubMed  Google Scholar 

  8. C Ponticelli G Moroni (2000) ArticleTitleLupus nephritis J Nephrol 13 385–99 Occurrence Handle11063145

    PubMed  Google Scholar 

  9. MJ Shlomchik MP Madaio (2003) ArticleTitleThe role of antibodies and B cells in the pathogenesis of lupus nephritis Springer Semin Immunopathol 24 363–75 Occurrence Handle10.1007/s00281-003-0119-1 Occurrence Handle12778333

    Article  PubMed  Google Scholar 

  10. S Izui PJ McConahey AN Theofilopoulos FJ Dixon (1979) ArticleTitleAssociation of circulating retroviral gp70-anti-gp70 immune complexes with murine systemic lupus erythematosus J Exp Med 149 1099–116 Occurrence Handle10.1084/jem.149.5.1099 Occurrence Handle221610

    Article  PubMed  Google Scholar 

  11. D Koffler PG Shur HG Kunkel (1967) ArticleTitleImmunological studies concerning nephritis of systemic lupus erythematosus J Exp Med 126 607–24 Occurrence Handle10.1084/jem.126.4.607 Occurrence Handle4168098

    Article  PubMed  Google Scholar 

  12. TM Schmiedeke FW Stockl R Weber Y Sugisaki SR Batsford A Vogt (1989) ArticleTitleHistones have high affinity for the glomerular basement membrane. Relevance for immune complex formation in lupus nephritis J Exp Med 169 1879–94 Occurrence Handle10.1084/jem.169.6.1879 Occurrence Handle2732675

    Article  PubMed  Google Scholar 

  13. T Morioka R Woitas Y Fujigaki SR Batsford A Vogt (1994) ArticleTitleHistone mediates glomerular deposition of small size DNA anti-DNA complex Kidney Int 45 991–7 Occurrence Handle8007603

    PubMed  Google Scholar 

  14. C Kramers MN Hylkema MC van Bruggen R van de Lagemaat HB Dijkman KJ Assmann et al. (1994) ArticleTitleAnti-nucleosome antibodies complexed to nucleosomal antigens show anti-DNA reactivity and bind to rat glomerular basement membrane in vivo J Clin Invest 94 568–77 Occurrence Handle8040312

    PubMed  Google Scholar 

  15. MC van Bruggen C Kramers B Walgreen JD Elema CG Kallenberg J van den Born et al. (1997) ArticleTitleNucleosomes and histones are present in glomerular deposits in human lupus nephritis Nephrol Dial Transplant 12 57–66 Occurrence Handle10.1093/ndt/12.1.57

    Article  Google Scholar 

  16. WG Couser DJ Salant (1980) ArticleTitleIn situ immune complex formation and glomerular injury Kidney Int 17 1–13 Occurrence Handle6990087

    PubMed  Google Scholar 

  17. WG Couser DR Steinmuller NM Stilmant DJ Salant LM Lowenstein (1978) ArticleTitleExperimental glomerulonephritis in the isolated perfused rat kidney J Clin Invest 62 1275–87 Occurrence Handle372233

    PubMed  Google Scholar 

  18. BJC van Damme GJ Fleuren WW Bakker RL Vernier J Hoedemaeker Ph (1978) ArticleTitleExperimental glomerulonephritis in the rat induced by antibodies directed against tubular antigens. V. Fixed glomerular antigens in the pathogenesis of heterologous immune complex glomerulonephritis Lab invest 38 502–10 Occurrence Handle147961

    PubMed  Google Scholar 

  19. D Kerjaschki MG Farquhar (1983) ArticleTitleImmunochemical localization of the Heymann nephritis antigen (gp330) in glomerular epithelial cells of normal Lewis rats J Exp Med 157 667–86 Occurrence Handle10.1084/jem.157.2.667 Occurrence Handle6337231

    Article  PubMed  Google Scholar 

  20. MP Madaio DJ Salant AJ Cohen S Adler WG Couser (1983) ArticleTitleComparative study of in situ immune deposit formation in active and passive Heymann nephritis Kidney Int 23 498–505 Occurrence Handle6221142

    PubMed  Google Scholar 

  21. TJ Neale CB Wilson (1982) ArticleTitleGlomerular antigens in Heymann's nephritis: reactivity of eluted and circulating antibody J Immunol 128 323–30 Occurrence Handle6459372

    PubMed  Google Scholar 

  22. WH Horl D Kerjaschki (2000) ArticleTitleMembranous glomerulonephritis (MGN) J Nephrol 113 291–316

    Google Scholar 

  23. PM Ronco (1999) ArticleTitleParaneoplastic glomerulopathies: new insights into an old entity Kidney Int 56 355–77 Occurrence Handle10.1046/j.1523-1755.1999.00548.x Occurrence Handle10411717

    Article  PubMed  Google Scholar 

  24. H Debiec V Guigonis B Mougenot J-P Haymann A Bensman G Deschenes et al. (2003) ArticleTitleAntenatal membranous glomerulonephritis with vascular injury induced by anti-neutral endopeptidase antibodies: toward new concepts in the pathogenesis of glomerular diseases J Am Soc Nephrol 14 S27–32 Occurrence Handle10.1097/01.ASN.0000067649.64849.75 Occurrence Handle12761235

    Article  PubMed  Google Scholar 

  25. W Heymann HZ Lund DB Hackel (1952) ArticleTitleThe nephrotic syndrome in the rats; with special reference to the progression of the glomerular lesion and to the use of nephrotoxic sera obtained from ducks J Lab Clin Med 39 218–24 Occurrence Handle14898148

    PubMed  Google Scholar 

  26. D Kerjaschki MG Farquhar (1982) ArticleTitleThe pathogenic antigen of Heymann nephritis is a membrane glycoprotein of the renal proximal tubule brush border Proc Natl Acad Sci USA 79 5557–61 Occurrence Handle6752952

    PubMed  Google Scholar 

  27. M Farquhar A Saito D Kerjaschki RA Orlando (1995) ArticleTitleThe Heymann nephritis antigenic complex: megalin (gp330) and RAP J Am Soc Nephrol 6 35–47 Occurrence Handle7579068

    PubMed  Google Scholar 

  28. H Debiec V Guigonis B Mougenot F Decobert JP Haymann A Bensman et al. (2002) ArticleTitleAntenatal membranous glomerulonephritis due to anti-neutral endopeptidase antibodies N Engl J Med 346 2053–60 Occurrence Handle10.1056/NEJMoa012895 Occurrence Handle12087141

    Article  PubMed  Google Scholar 

  29. H Debiec J Nauta F Coulet M van der Burg V Guigonis T Schurmans et al. (2004) ArticleTitleRole of truncating mutations in MME gene in fetomaternal alloimmunisation and antenatal glomerulonephritis Lancet 364 1252–9 Occurrence Handle10.1016/S0140-6736(04)17142-0 Occurrence Handle15464186

    Article  PubMed  Google Scholar 

  30. R Clynes C Dumitru JV Ravetch (1998) ArticleTitleUncoupling of immune complex formation and kidney damage in autoimmune glomerulonephritis Science 279 1052–4 Occurrence Handle10.1126/science.279.5353.1052 Occurrence Handle9461440

    Article  PubMed  Google Scholar 

  31. SY Park S Ueda H Ohno Y Hamano M Tanaka T Shiratori et al. (1998) ArticleTitleResistance of Fc receptor-deficient mice to fatal glomerulonephritis J Clin Invest 102 1229–38 Occurrence Handle9739057

    PubMed  Google Scholar 

  32. Y Suzuki I Shirato K Okumura JV Ravetch T Takai Y Tomino et al. (1998) ArticleTitleDistinct contribution of Fc receptors and angiotensin II-dependent pathways in anti-GBM glomerulonephritis Kidney Int 54 1166–74 Occurrence Handle10.1046/j.1523-1755.1998.00108.x Occurrence Handle9767532

    Article  PubMed  Google Scholar 

  33. S Bolland JV Ravetch (2000) ArticleTitleSpontaneous autoimmune disease in Fc(gamma)RIIB-deficient mice results from strain-specific epistasis Immunity 13 277–85 Occurrence Handle10.1016/S1074-7613(00)00027-3 Occurrence Handle10981970

    Article  PubMed  Google Scholar 

  34. AS Muhlfeld S Segerer K Hudkins MD Carling M Wen AG Farr et al. (2003) ArticleTitleDeletion of the Fc · receptor IIb in thymic stromal lymphopoietin transgenic mice aggravates membranoproliferative glomerulonephritis Am J Pathol 163 1127–36 Occurrence Handle12937154

    PubMed  Google Scholar 

  35. RM Tarzi KA Davies MG Robson L Fossati-Jimack T Saito MJ Walport et al. (2002) ArticleTitleNephrotoxic nephritis is mediated by Fc · receptors on circulating leukocytes and not intrinsic renal cells Kidney Int 62 2087–96 Occurrence Handle10.1046/j.1523-1755.2002.00687.x Occurrence Handle12427132

    Article  PubMed  Google Scholar 

  36. Y Suzuki J Gomez-Guerrero I Shirato O Lopez-Franco J Gallego-Delgado G Sanjuan et al. (2003) ArticleTitlePre-existing glomerular immune complexes induce polymorphonuclear cell recruitment through an Fc receptor-dependent respiratory burst: potential role in the perpetuation of immune nephritis J Immunol 170 3243–53 Occurrence Handle12626583

    PubMed  Google Scholar 

  37. S Li SR Holdsworth PG Tipping (1997) ArticleTitleAntibody independent crescentic glomerulonephritis in mu chain deficient mice Kidney Int 51 672–8 Occurrence Handle9067898

    PubMed  Google Scholar 

  38. DJ Salant S Belok MP Madaio WG Couser (1980) ArticleTitleA new role for complement in experimental membranous nephropathy in rats J Clin Invest 66 1339–50 Occurrence Handle7440718

    PubMed  Google Scholar 

  39. DT Perkinson PJ Baker WG Couser RJ Johnson S Adler (1985) ArticleTitleMembrane attack complex deposition in experimental glomerular injury Am J Pathol 120 121–8 Occurrence Handle3160245

    PubMed  Google Scholar 

  40. AV Cybulsky RJ Quigg DJ Salant (1986) ArticleTitleThe membrane attack complex in complement-mediated glomerular epithelial cell injury: formation and stability of C5b-9 and C5b-7 in rat membranous nephropathy J Immunol 137 1511–6 Occurrence Handle3745914

    PubMed  Google Scholar 

  41. PJ Baker RF Ochi M Schulze RJ Johnson C Campbell WG Couser (1989) ArticleTitleDepletion of C6 prevents development of proteinuria in experimental membranous nephropathy in rats Am J Pathol 135 185–94 Occurrence Handle2672823

    PubMed  Google Scholar 

  42. VJ Savin RJ Johnson WG Couser (1994) ArticleTitleC5b-9 increases albumin permeability of isolated glomeruli in vitro Kidney Int 46 382–7 Occurrence Handle7526024

    PubMed  Google Scholar 

  43. RJ Quigg AV Cybulsky JB Jacobs DJ Salant (1988) ArticleTitleAnti-Fx1A produces complement-dependent cytotoxicity of glomerular epithelial cells Kidney Int 34 43–52 Occurrence Handle3172636

    PubMed  Google Scholar 

  44. JI McMillan JW Riordan WG Couser AS Pollock DH Lovett (1996) ArticleTitleCharacterization of a glomerular epithelial cell metalloproteinase as matrix metalloproteinase-9 with enhanced expression in a model of membranous nephropathy J Clin Invest 97 1094–101 Occurrence Handle8613533

    PubMed  Google Scholar 

  45. TJ Neale R Ullrich P Ojha H Poczewski AJ Verhoeven D Kerjaschki (1993) ArticleTitleReactive oxygen species and neutrophil respiratory burst cytochrome b558 are produced by kidney glomerular cells in passive Heymann nephritis Proc Natl Acad Sci USA 90 3645–9 Occurrence Handle8475113

    PubMed  Google Scholar 

  46. SV Shah (1988) ArticleTitleEvidence suggesting a role for hydroxyl radical in passive Heymann nephritis in rats Am J Physiol Renal Fluid Electrolyte Physiol 254 F337–44

    Google Scholar 

  47. AV Cybulsky T Takano J Papillon A Khadir J Liu H Peng (2002) ArticleTitleComplement C5b-9 membrane attack complex increases expression of endoplasmic reticulum stress proteins in glomerular epithelial cells J Biol Chem 277 41342–51 Occurrence Handle10.1074/jbc.M204694200 Occurrence Handle12191998

    Article  PubMed  Google Scholar 

  48. JW Pippin R Durvasula A Petermann K Hiromura WG Couser SJ Shankland (2003) ArticleTitleDNA damage is a novel response to sublytic complement C5b-9-induced injury in podocytes J Clin Invest 111 877–85 Occurrence Handle10.1172/JCI200315645 Occurrence Handle12639994

    Article  PubMed  Google Scholar 

  49. PS Topham SA Haydar R Kuphal JD Lightfoot DJ Salant (1999) ArticleTitleComplement-mediated injury reversibly disrupts glomerular epithelial cell actin microfilaments and focal adhesions Kidney Int 55 1763–75 Occurrence Handle10.1046/j.1523-1755.1999.00407.x Occurrence Handle10231439

    Article  PubMed  Google Scholar 

  50. H Yuan E Takeuchi GA Taylor M McLaughlin D Brown DJ Salant (2002) ArticleTitleNephrin dissociates from actin, and its expression is reduced in early experimental membranous nephropathy J Am Soc Nephrol 13 946–56 Occurrence Handle11912254

    PubMed  Google Scholar 

  51. Nangaku M, Shankland SJ, Couser WG. Cellular response to injury in membranous nephropathy. J Am Soc Nephrol

  52. DH Lovett GM Haensch M Goppelt K Resch D Gemsa (1987) ArticleTitleActivation of glomerular mesangial cells by the terminal membrane attack complex of complement J Immunol 138 2473–80 Occurrence Handle3494069

    PubMed  Google Scholar 

  53. M Schonermark R Deppisch G Riedasch K Rother GM Haensch (1991) ArticleTitleInduction of mediator release from human glomerular mesangial cells by the terminal complement components C5b-9 Int Arch Allergy Appl Immunol 96 331–7 Occurrence Handle1809690

    PubMed  Google Scholar 

  54. WG Couser J Pippin SJ Shankland (2001) ArticleTitleComplement (C5b-9) induces DNA synthesis in rat mesangial cells in vitro Kidney Int 59 905–12 Occurrence Handle10.1046/j.1523-1755.2001.059003905.x Occurrence Handle11231345

    Article  PubMed  Google Scholar 

  55. H Iida R Seifert CE Alpers RG Gronwald PE Phillips P Pritzl et al. (1991) ArticleTitlePlatelet-derived growth factor (PDGF) and PDGF receptor are induced in mesangial proliferative nephritis in the rat Proc Natl Acad Sci USA 88 6560–4 Occurrence Handle1713682

    PubMed  Google Scholar 

  56. Y Isaka Y Fujiwara N Ueda Y Kaneda T Kamada E Imai (1993) ArticleTitleGlomerulosclerosis induced by in vivo transfection of transforming growth factor-beta or platelet-derived growth factor gene into the rat kidney J Clin Invest 92 2597–601 Occurrence Handle8254017

    PubMed  Google Scholar 

  57. J Brandt J Pippin M Schulze GM Hansch CE Alpers RJ Johnson et al. (1996) ArticleTitleRole of the complement membrane attack complex (C5b-9) in mediating experimental mesangioproliferative glomerulonephritis Kidney Int 49 335–43 Occurrence Handle8821815

    PubMed  Google Scholar 

  58. J Zwirner M Burg M Schulze R Brunkhorst O Gotze KM Koch et al. (1997) ArticleTitleActivated complement C3: a potentially novel predictor of progressive IgA nephropathy Kidney Int 51 1257–64 Occurrence Handle9083294

    PubMed  Google Scholar 

  59. A Roos LH Bouwman DJ van Gijlswijk-Janssen MC Faber-Krol GL Stahl MR Daha (2001) ArticleTitleHuman IgA activates the complement system via the mannan-binding lectin pathway J Immunol 167 2861–8 Occurrence Handle11509633

    PubMed  Google Scholar 

  60. S Hisano M Matsushita T Fujita Y Endo S Takebayashi (2001) ArticleTitleMesangial IgA2 deposits and lectin pathway-mediated complement activation in IgA glomerulonephritis Am J Kidney Dis 38 1082–8 Occurrence Handle11684563

    PubMed  Google Scholar 

  61. M Endo H Ohi A Satomura M Hidaka I Ohsawa T Fujita et al. (2001) ArticleTitleRegulation of in situ complement activation via the lectin pathway in patients with IgA nephropathy Clin Nephrol 55 185–91 Occurrence Handle11316237

    PubMed  Google Scholar 

  62. M Matsuda K Shikata J Wada H Sugimoto Y Shikata T Kawasaki et al. (1998) ArticleTitleDeposition of mannan binding protein and mannan binding protein-mediated complement activation in the glomeruli of patients with IgA nephropathy Nephron 80 408–13 Occurrence Handle10.1159/000045212 Occurrence Handle9832639

    Article  PubMed  Google Scholar 

  63. M Endo H Ohi I Ohsawa T Fujita M Matsushita T Fujita (1998) ArticleTitleGlomerular deposition of mannose-binding lectin (MBL) indicates a novel mechanism of complement activation in IgA nephropathy Nephrol Dial Transplant 13 1984–90 Occurrence Handle10.1093/ndt/13.8.1984 Occurrence Handle9719152

    Article  PubMed  Google Scholar 

  64. M Nangaku CE Alpers J Pippin SJ Shankland S Adler K Kurokawa et al. (1997) ArticleTitleRenal microvascular injury induced by antibody to glomerular endothelial cells is mediated by C5b-9 Kidney Int 52 1570–8 Occurrence Handle9407502

    PubMed  Google Scholar 

  65. J Hughes M Nangaku CE Alpers SJ Shankland WG Couser RJ Johnson (2000) ArticleTitleThe C5b-9 membrane attack complex mediates endothelial cell apoptosis in experimental glomerulonephritis Am J Physiol 278 F747–57

    Google Scholar 

  66. HM Belmont J Buyon R Giorno S Abramson (1994) ArticleTitleUp-regulation of endothelial cell adhesion molecules characterizes disease activity in systemic lupus erythematosus. The Shwartzman phenomenon revisited Arthritis Rheum 37 376–83 Occurrence Handle7510492

    PubMed  Google Scholar 

  67. MC Carroll (2004) ArticleTitleA protective role for innate immunity in systemic lupus erythematosus Nat Rev Immunol 4 825–31 Occurrence Handle10.1038/nri1456 Occurrence Handle15459673

    Article  PubMed  Google Scholar 

  68. L Bao M Haas SA Boackle DM Kraus PN Cunningham JJ Alexander RK Anderson et al. (2002) ArticleTitleTransgenic expression of a soluble complement inhibitor protects against renal disease and promotes survival in MRL/lpr mice J Immunol 168 3601–7 Occurrence Handle11907125

    PubMed  Google Scholar 

  69. L Bao M Haas DM Kraus BK Hack JK Rakstang VM Holers et al. (2003) ArticleTitleAdministration of a soluble recombinant complement C3 inhibitor protects against renal disease in MRL/lpr mice J Am Soc Nephrol 14 670–9 Occurrence Handle10.1097/01.ASN.0000051597.27127.A1 Occurrence Handle12595503

    Article  PubMed  Google Scholar 

  70. H Watanabe G Garnier A Circolo RA Wetsel P Ruiz VM Holers et al. (2000) ArticleTitleModulation of renal disease in MRL/lpr mice genetically deficient in the alternative complement pathway factor B J Immunol 164 786–94 Occurrence Handle10623824

    PubMed  Google Scholar 

  71. H Sekine CM Reilly ID Molano G Garnier A Circolo P Ruiz et al. (2001) ArticleTitleComplement component C3 is not required for full expression of immune complex glomerulonephritis in MRL/lpr mice J Immunol 166 6444–51 Occurrence Handle11342671

    PubMed  Google Scholar 

  72. M Nangaku (1998) ArticleTitleComplement regulatory proteins in glomerulonephritis Kidney Int 54 1419–28 Occurrence Handle10.1046/j.1523-1755.1998.00130.x Occurrence Handle9844117

    Article  PubMed  Google Scholar 

  73. M Nangaku RJ Johnson WG Couser (1997) ArticleTitleComplement regulatory proteins and glomerulonephritis Exp Nephrol 5 345–54 Occurrence Handle9386969

    PubMed  Google Scholar 

  74. M Nangaku (2003) ArticleTitleComplement regulatory proteins: are they important in disease? J Am Soc Nephrol 14 2411–3 Occurrence Handle10.1097/01.ASN.0000088010.15313.A1 Occurrence Handle12937321

    Article  PubMed  Google Scholar 

  75. M Nangaku RL Meel J Pippin KL Gordon BP Morgan RJ Johnson et al. (1996) ArticleTitleTransfected CD59 protects mesangial cells from injury induced by antibody and complement Kidney Int 50 257–66 Occurrence Handle8807596

    PubMed  Google Scholar 

  76. M Nangaku RJ Quigg SJ Shankland N Okada RJ Johnson WG Couser (1997) ArticleTitleOverexpression of Crry protects mesangial cells from complement mediated injury J Am Soc Nephrol 8 223–33 Occurrence Handle9048341

    PubMed  Google Scholar 

  77. M Nangaku CE Alpers J Pippin SJ Shankland K Kurokawa S Adler et al. (1998) ArticleTitleCD59 protects glomerular endothelial cells from immune-mediated thrombotic microangiopathy in rats J Am Soc Nephrol 9 590–7 Occurrence Handle9555661

    PubMed  Google Scholar 

  78. H Nishikage L Baranyi H Okada N Okada K Isobe A Nomura et al. (1995) ArticleTitleThe role of a complement regulatory protein in rat mesangial glomerulonephritis J Am Soc Nephrol 6 234–41 Occurrence Handle7579090

    PubMed  Google Scholar 

  79. S Matsuo H Nishikage F Yoshida A Nomura SJ Piddlesden BP Morgan (1994) ArticleTitleRole of CD59 in experimental glomerulonephritis in rats Kidney Int 46 191–200 Occurrence Handle7523753

    PubMed  Google Scholar 

  80. B Schiller C He DJ Salant A Lim JJ Alexander RJ Quigg (1998) ArticleTitleInhibition of complement regulation is key to the pathogenesis of active Heymann nephritis J Exp Med 188 1353–8 Occurrence Handle10.1084/jem.188.7.1353 Occurrence Handle9763614

    Article  PubMed  Google Scholar 

  81. PN Cunningham BK Hack G Ren AW Minto BP Morgan RJ Quigg (2001) ArticleTitleGlomerular complement regulation is overwhelmed in passive Heymann nephritis Kidney Int 60 900–9 Occurrence Handle10.1046/j.1523-1755.2001.060003900.x Occurrence Handle11532085

    Article  PubMed  Google Scholar 

  82. K Yamada T Miwa J Liu M Nangaku WC Song (2004) ArticleTitleCritical protection from renal ischemia reperfusion injury by CD55 and CD59 J Immunol 172 3869–75 Occurrence Handle15004194

    PubMed  Google Scholar 

  83. H Sogabe M Nangaku Y Ishibashi T Wada T Fujita X Sun et al. (2001) ArticleTitleIncreased susceptibility of decay-accelerating factor (DAF) deficient mice to anti-GBM glomerulonephritis J Immunol 167 2791–7 Occurrence Handle11509624

    PubMed  Google Scholar 

  84. N Hanafusa H Sogabe K Yamada T Wada T Fujita M Nangaku (2002) ArticleTitleContribution of genetically engineered animals to the analyses of complement in the pathogenesis of nephritis Nephrol Dial Transplant 17 IssueIDSuppl 9 34–6 Occurrence Handle10.1093/ndt/17.suppl_9.34 Occurrence Handle12386282

    Article  PubMed  Google Scholar 

  85. F Lin DJ Salant H Meyerson S Emancipator BP Morgan ME Medof (2004) ArticleTitleRespective roles of decay-accelerating factor and CD59 in circumventing glomerular injury in acute nephrotoxic serum nephritis J Immunol 172 2636–42 Occurrence Handle14764738

    PubMed  Google Scholar 

  86. F Lin SN Emancipator DJ Salant ME Medof (2002) ArticleTitleDecay-accelerating factor confers protection against complement-mediated podocyte injury in acute nephrotoxic nephritis Lab Invest 82 563–9 Occurrence Handle10.1038/labinvest.3780451 Occurrence Handle12003997

    Article  PubMed  Google Scholar 

  87. P Warwicker TH Goodship RL Donne Y Pirson A Nicholls RM Ward et al. (1998) ArticleTitleGenetic studies into inherited and sporadic hemolytic uremic syndrome Kidney Int 53 836–44 Occurrence Handle10.1111/j.1523-1755.1998.00824.x Occurrence Handle9551389

    Article  PubMed  Google Scholar 

  88. N Rougier MD Kazatchkine JP Rougier V Fremeaux-Bacchi J Blouin G Deschenes et al. (1998) ArticleTitleHuman complement factor H deficiency associated with hemolytic uremic syndrome J Am Soc Nephrol 9 2318–26 Occurrence Handle9848786

    PubMed  Google Scholar 

  89. M Noris P Ruggenenti A Perna S Orisio J Caprioli C Skerka et al. (1999) ArticleTitleHypocomplementemia discloses genetic predisposition to hemolytic uremic syndrome and thrombotic thrombocytopenic purpura: role of factor H abnormalities. Italian Registry of Familial and Recurrent Hemolytic Uremic Syndrome/Thrombotic Thrombocytopenic Purpura J Am Soc Nephrol 10 281–93 Occurrence Handle10215327

    PubMed  Google Scholar 

  90. J Caprioli F Castelletti S Bucchioni P Bettinaglio E Bresin G Pianetti et al. (2003) ArticleTitleInternational Registry of Recurrent and Familial HUS/TTP. Complement factor H mutations and gene polymorphisms in haemolytic uraemic syndrome: the C-257T, the A2089G and the G2881T polymorphisms are strongly associated with the disease Hum Mol Genet 12 3385–95 Occurrence Handle10.1093/hmg/ddg363 Occurrence Handle14583443

    Article  PubMed  Google Scholar 

  91. A Richards MR Buddles RL Donne BS Kaplan E Kirk MC Venning et al. (2001) ArticleTitleFactor H mutations in hemolytic uremic syndrome cluster in exons 18–20, a domain important for host cell recognition Am J Hum Genet 68 485–90 Occurrence Handle10.1086/318203 Occurrence Handle11170896

    Article  PubMed  Google Scholar 

  92. T Manuelian J Hellwage S Meri J Caprioli M Noris S Heinen et al. (2003) ArticleTitleMutations in factor H reduce binding affinity to C3b and heparin and surface attachment to endothelial cells in hemolytic uremic syndrome J Clin Invest 111 1181–90 Occurrence Handle10.1172/JCI200316651 Occurrence Handle12697737

    Article  PubMed  Google Scholar 

  93. A Richards EJ Kemp MK Liszewski JA Goodship AK Lampe R Decorte et al. (2003) ArticleTitleMutations in human complement regulator, membrane cofactor protein (CD46), predispose to development of familial hemolytic uremic syndrome Proc Natl Acad Sci USA 100 12966–71 Occurrence Handle10.1073/pnas.2135497100 Occurrence Handle14566051

    Article  PubMed  Google Scholar 

  94. M Noris S Brioschi J Caprioli M Todeschini E Bresin F Porrati et al. (2003) ArticleTitleInternational Registry of Recurrent and Familial HUS/TTP. Familial haemolytic uraemic syndrome and an MCP mutation Lancet 362 1542–7 Occurrence Handle10.1016/S0140-6736(03)14742-3 Occurrence Handle14615110

    Article  PubMed  Google Scholar 

  95. MA Dragon-Durey V Fremeaux-Bacchi C Loirat J Blouin P Niaudet G Deschenes et al. (2004) ArticleTitleHeterozygous and homozygous factor H deficiencies associated with hemolytic uremic syndrome or membranoproliferative glomerulonephritis: report and genetic analysis of 16 cases J Am Soc Nephrol 15 787–95 Occurrence Handle10.1097/01.ASN.0000115702.28859.A7 Occurrence Handle14978182

    Article  PubMed  Google Scholar 

  96. MC Pickering HT Cook J Warren AE Bygrave J Moss MJ Walport et al. (2002) ArticleTitleUncontrolled C3 activation causes membranoproliferative glomerulonephritis in mice deficient in complement factor H Nat Genet 31 424–8 Occurrence Handle12091909

    PubMed  Google Scholar 

  97. K Hogasen JH Jansen TE Mollnes J Hovdenes M Harboe (1995) ArticleTitleHereditary porcine membranoproliferative glomerulonephritis type II is caused by factor H deficiency J Clin Invest 95 1054–61 Occurrence Handle7883953

    PubMed  Google Scholar 

  98. N Yuki K Suzuki M Koga Y Nishimoto M Odaka K Hirata et al. (2004) ArticleTitleCarbohydrate mimicry between human ganglioside GM1 and Campylobacter jejuni lipooligosaccharide causes Guillain-Barre syndrome Proc Natl Acad Sci USA 101 11404–9 Occurrence Handle10.1073/pnas.0402391101 Occurrence Handle15277677

    Article  PubMed  Google Scholar 

  99. PC Godschalk AP Heikema M Gilbert T Komagamine CW Ang J Glerum et al. (2004) ArticleTitleThe crucial role of Campylobacter jejuni genes in anti-ganglioside antibody induction in Guillain-Barre syndrome J Clin Invest 114 1659–65 Occurrence Handle10.1172/JCI200415707 Occurrence Handle15578098

    Article  PubMed  Google Scholar 

  100. N Yoshizawa K Yamakami M Fujino T Oda K Tamura K Matsumoto et al. (2004) ArticleTitleNephritis-associated plasmin receptor and acute poststreptococcal glomerulonephritis: characterization of the antigen and associated immune response J Am Soc Nephrol 15 1785–93 Occurrence Handle10.1097/01.ASN.0000130624.94920.6B Occurrence Handle15213266

    Article  PubMed  Google Scholar 

  101. T Oda K Yamakami F Omasu S Suzuki S Miura T Sugisaki et al. (2005) ArticleTitleGlomerular plasmin-like activity in relation to nephritis-associated plasmin receptor in acute poststreptococcal glomerulonephritis J Am Soc Nephrol 16 247–54 Occurrence Handle10.1681/ASN.2004040341 Occurrence Handle15574512

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaomi Nangaku.

About this article

Cite this article

Nangaku, M., Couser, W. Mechanisms of immune-deposit formation and the mediation of immune renal injury. Clin Exp Nephrol 9, 183–191 (2005). https://doi.org/10.1007/s10157-005-0357-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-005-0357-8

Key words

Navigation