Skip to main content
Log in

The ABCD’s of β-lactamase nomenclature

  • Review Article
  • Published:
Journal of Infection and Chemotherapy

Abstract

β-Lactamases can be named on the basis of molecular characteristics or functional properties. Molecular classes A, B, C, and D define an enzyme according to amino acid sequence and conserved motifs. Functional groups 1, 2, and 3 are used to assign a clinically useful description to a family of enzymes, with subgroups designated according to substrate and inhibitor profiles. In addition, other designations are used to define the functionality of specific subgroups, such as extended-spectrum β-lactamases, or ESBLs, and inhibitor-resistant TEM, or IRT, β-lactamases. None of these systems provides an unambiguous description of this versatile set of enzymes. A proposed classification system involving microbiological, molecular, and biochemical properties is described, based on the traditional classes A, B, C, and D and functional groups 1, 2, and 3 designations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gazin M, Paasch F, Goossens H, Malhotra-Kumar S, Mosar WP, Teams SWS. Current trends in culture-based and molecular detection of extended-spectrum-β-lactamase-harboring and carbapenem-resistant Enterobacteriaceae. J Clin Microbiol. 2012;50:1140–6.

    Article  PubMed  Google Scholar 

  2. Bush K. Proliferation and significance of clinically relevant β-lactamases. Ann N Y Acad Sci. 2013;1277:84–90.

    Article  PubMed  CAS  Google Scholar 

  3. Bush K. Carbapenemases: partners in crime. J Global Antimicrob Resist. 2013;1:7–16.

    Article  Google Scholar 

  4. Eagye KJ, Banevicius MA, Nicolau DP. Pseudomonas aeruginosa is not just in the intensive care unit any more: implications for empirical therapy. Crit Care Med. 2012;40:1329–32.

    Article  PubMed  Google Scholar 

  5. Hirsch EB, Guo B, Chang KT, Cao H, Ledesma KR, Singh M, et al. Assessment of antimicrobial combinations for Klebsiella pneumoniae carbapenemase-producing K. pneumoniae. J Infect Dis. 2013;207:786–93.

    Article  PubMed  CAS  Google Scholar 

  6. Péduzzi J, Reynaud A, Baron P, Barthélémy M, Labia R. Chromosomally encoded cephalosporin-hydrolyzing β-lactamase of Proteus vulgaris RO104 belongs to Ambler’s class A. Biochim Biophys Acta. 1994;1207:31–9.

    Article  PubMed  Google Scholar 

  7. Ambler RP, Meadway RJ. Chemical structure of bacterial penicillinases. Nature (Lond). 1969;222:24–6.

    Article  CAS  Google Scholar 

  8. Ambler RP. The amino acid sequence of Staphylococcus aureus penicillinase. Biochem J. 1975;151:197–218.

    PubMed  CAS  Google Scholar 

  9. Sawai T, Mitsuhashi S, Yamagishi S. Drug resistance of enteric bacteria. XIV. Comparison of β-lactamases in gram-negative rod bacteria resistant to α-aminobenzylpenicillin. Jpn J Microbiol. 1968;12:423–34.

    PubMed  CAS  Google Scholar 

  10. Richmond MH, Sykes RB. The β-lactamases of gram-negative bacteria and their possible physiological role. In: Rose AH, Tempest DW, editors. Advances in microbial physiology, vol. 9. New York: Academic Press; 1973. p. 31–88.

    Google Scholar 

  11. Bush K. Characterization of β-lactamases. Antimicrob Agents Chemother. 1989;33:259–63.

    Article  PubMed  CAS  Google Scholar 

  12. Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother. 1995;39:1211–33.

    Article  PubMed  CAS  Google Scholar 

  13. Thatcher DR. Progress on penicillinase. Nature (Lond). 1975;255:526.

    Article  Google Scholar 

  14. Ambler RP, Scott GK. Partial amino acid sequence of penicillinase coded by Escherichia coli plasmid R6K. Proc Natl Acad Sci USA. 1978;75:3732–6.

    Article  PubMed  CAS  Google Scholar 

  15. Ambler RP. The structure of β-lactamases. Philos Trans R Soc Lond (Biol). 1980;289:321–31.

    Article  CAS  Google Scholar 

  16. Ambler RP, Daniel M, Fleming J, Hermoso JM, Pang C, Waley SG. The amino acid sequence of the zinc-requiring beta-lactamase II from the bacterium Bacillus cereus 569. FEBS Lett. 1985;189:207–11.

    Article  PubMed  CAS  Google Scholar 

  17. Medeiros AA. Evolution and dissemination of β-lactamases accelerated by generations of beta-lactam antibiotics. Clin Infect Dis. 1997;24:S19–45.

    Article  PubMed  CAS  Google Scholar 

  18. Jaurin B, Grundstrom T. ampC cephalosporinase of Escherichia coli K-12 has a different evolutionary origin from that of β-lactamases of the penicillinase type. Proc Natl Acad Sci USA. 1981;78:4897–901.

    Article  PubMed  CAS  Google Scholar 

  19. Huovinen P, Huovinen S, Jacoby GA. Sequence of PSE-2 beta-lactamase. Antimicrob Agents Chemother. 1988;32:134–6.

    Article  PubMed  CAS  Google Scholar 

  20. Joris B, Ghuysen J-M, Dive G, Renard A, Dideberg O, Charlier P, et al. The active-site-serine penicillin-recognizing enzymes as members of the Streptomyces R61 DD-peptidase family. Biochem J. 1988;250:313–24.

    PubMed  CAS  Google Scholar 

  21. Afzal-Shah M, Woodford N, Livermore DM. Characterization of OXA-25, OXA-26, and OXA-27, molecular class D beta-lactamases associated with carbapenem resistance in clinical isolates of Acinetobacter baumannii. Antimicrob Agents Chemother. 2001;45:583–8.

    Article  PubMed  CAS  Google Scholar 

  22. Poirel L, Naas T, Nordmann P. Diversity, epidemiology, and genetics of class D β-lactamases. Antimicrob Agents Chemother. 2010;54:24–38.

    Article  PubMed  CAS  Google Scholar 

  23. Ambler RP, Coulson AFW, Frère J-M, Ghuysen J-M, Joris B, Forsman M, et al. A standard numbering scheme for the Class A β-lactamases. Biochem J. 1991;276:269–72.

    PubMed  CAS  Google Scholar 

  24. Sauvage E, Fonze E, Quinting B, Galleni M, Frère JM, Charlier P. Crystal structure of the Mycobacterium fortuitum class A beta-lactamase: structural basis for broad substrate specificity. Antimicrob Agents Chemother. 2006;50:2516–21.

    Article  PubMed  CAS  Google Scholar 

  25. Goldberg SD, Iannuccilli W, Nguyen T, Ju J, Cornish VW. Identification of residues critical for catalysis in a class C beta-lactamase by combinatorial scanning mutagenesis. Protein Sci. 2003;12:1633–45.

    Article  PubMed  CAS  Google Scholar 

  26. Palzkill T, Botstein D. Identification of amino acid substitutions that alter the substrate specificity of TEM-1 β-lactamase. J Bacteriol. 1992;174:5237–43.

    PubMed  CAS  Google Scholar 

  27. Garau G, Garcia-Saez I, Bebrone C, Anne C, Mercuri P, Galleni M, et al. Update of the standard numbering scheme for class B β-lactamases. Antimicrob Agents Chemother. 2004;48:2347–9.

    Article  PubMed  CAS  Google Scholar 

  28. Frère JM, Galleni M, Bush K, Dideberg O. Is it necessary to change the classification of beta-lactamases? J Antimicrob Chemother. 2005;55:1051–3.

    Article  PubMed  Google Scholar 

  29. Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, et al. Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother. 2009;53:5046–54.

    Article  PubMed  CAS  Google Scholar 

  30. King D, Strynadka N. Crystal structure of New Delhi metallo-β-lactamase reveals molecular basis for antibiotic resistance. Protein Sci. 2011;20:1484–91.

    Article  PubMed  CAS  Google Scholar 

  31. Hernandez-Valladares M, Felici A, Weber G, Adolph H, Zeppezauer M, Rossolini G, et al. Zn(II) dependence of the Aeromonas hydrophila AE036 metallo-beta-lactamase activity and stability. Biochemistry. 1997;36:11534–41.

    Article  PubMed  CAS  Google Scholar 

  32. Mabilat C, Courvalin P. Development of “oligotyping” for characterization and molecular epidemiology of TEM β-lactamases in members of the family Enterobacteriaceae. Antimicrob Agents Chemother. 1990;34:2210–6.

    Article  PubMed  CAS  Google Scholar 

  33. Barthélémy M, Péduzzi J, Yaghlane HB, Labia R. Single amino acid substitution between SHV-1 β-lactamase and cefotaxime-hydrolyzing SHV-2 enzyme. FEBS Lett. 1988;231:217–20.

    Article  PubMed  Google Scholar 

  34. Labia R, Morand A, Tiwari K, Pitton JS, Sirot D, Sirot J. Kinetic properties of two plasmid-mediated beta-lactamases from Klebsiella pneumoniae with strong activity against third-generation cephalosporins. J Antimicrob Chemother. 1988;21:301–7.

    Article  PubMed  CAS  Google Scholar 

  35. Sowek JA, Singer SB, Ohringer S, Malley MF, Dougherty TJ, Gougoutas JZ, et al. Substitution of lysine at position 104 or 240 of TEM-1pTZ18R β-lactamase enhances the effect of serine-164 substitution on the hydrolysis or affinity for cephalosporins and the monobactam aztreonam. Biochemistry. 1991;30:3179–88.

    Article  PubMed  CAS  Google Scholar 

  36. Bush K, Jacoby GA. Updated functional classification of β-lactamases. Antimicrob Agents Chemother. 2010;54:969–76.

    Article  PubMed  CAS  Google Scholar 

  37. Govardhan CP, Pratt RF. Kinetics and mechanism of the serine beta-lactamase catalyzed hydrolysis of depsipeptides. Biochemistry. 1987;26:3385–95.

    Article  PubMed  CAS  Google Scholar 

  38. Queenan A, Shang W, Flamm R, Bush K. Hydrolysis and inhibition profiles of β-lactamases from molecular classes A to D with doripenem, imipenem, and meropenem. Antimicrob Agents Chemother. 2010;54:565–9.

    Article  PubMed  CAS  Google Scholar 

  39. Zhou XY, Bordon F, Sirot D, Kitzis M-D, Gutmann L. Emergence of clinical isolates of Escherichia coli producing TEM-1 derivatives or an OXA-1 β-lactamase conferring resistance to β-lactamase inhibitors. Antimicrob Agents Chemother. 1994;38:1085–9.

    Article  PubMed  CAS  Google Scholar 

  40. Prinarakis EE, Miriagou V, Tzelepi E, Gazouli M, Tzouvelekis L. Emergence of an inhibitor-resistant β-lactamase (SHV-10) derived from an SHV-5 variant. Antimicrob Agents Chemother. 1997;41:838–40.

    PubMed  CAS  Google Scholar 

  41. Sirot D, Recule C, Chaibi EB, Bret L, Croize J, Chanal-Claris C, et al. A complex mutant of TEM-1 β-lactamase with mutations encountered in both IRT-4 and extended spectrum TEM-15, produced by an Escherichia coli clinical isolate. Antimicrob Agents Chemother. 1997;41:1322–5.

    PubMed  CAS  Google Scholar 

  42. Poirel L, Mammeri H, Nordmann P. TEM-121, a novel complex mutant of TEM-type beta-lactamase from Enterobacter aerogenes. Antimicrob Agents Chemother. 2004;48:4528–31.

    Article  PubMed  CAS  Google Scholar 

  43. Lim D, Sanschagrin F, Passmore L, De Castro L, Levesque RC, Strynadka NC. Insights into the molecular basis for the carbenicillinase activity of PSE-4 beta-lactamase from crystallographic and kinetic studies. Biochemistry. 2001;40:395–402.

    Article  PubMed  CAS  Google Scholar 

  44. Potron A, Poirel L, Croize J, Chanteperdrix V, Nordmann P. Genetic and biochemical characterization of the first extended-spectrum CARB-type beta-lactamase, RTG-4, from Acinetobacter baumannii. Antimicrob Agents Chemother. 2009;53:3010–6.

    Article  PubMed  CAS  Google Scholar 

  45. Matsumoto Y, Inoue M. Characterization of SFO-1, a plasmid-mediated inducible class A β-lactamase from Enterobacter cloacae. Antimicrob Agents Chemother. 1999;43:307–13.

    PubMed  CAS  Google Scholar 

  46. Walsh TR, MacGowan AP, Bennett PM PM. Sequence analysis and enzyme kinetics of the L2 serine β-lactamase from Stenotrophomonas maltophilia. Antimicrob Agents Chemother. 1997;41:1460–4.

    PubMed  CAS  Google Scholar 

  47. Yigit H, Queenan AM, Rasheed JK, Biddle JW, Domenech-Sanchez A, Alberti S, et al. Carbapenem-resistant strain of Klebsiella oxytoca harboring carbapenem-hydrolyzing beta-lactamase KPC-2. Antimicrob Agents Chemother. 2003;47:3881–9.

    Article  PubMed  CAS  Google Scholar 

  48. Segatore B, Massidda O, Satta G, Setacci D, Amicosante G. High specificity of cphA-encoded metallo-β-lactamase from Aeromonas hydrophila AE036 for carbapenems and its contribution to β-lactam resistance. Antimicrob Agents Chemother. 1993;37:1324–8.

    Article  PubMed  CAS  Google Scholar 

  49. Queenan AM, Foleno B, Gownley C, Wira E, Bush K. Effects of inoculum and beta-lactamase activity in AmpC- and extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae clinical isolates tested by using NCCLS ESBL methodology. J Clin Microbiol. 2004;42:269–75.

    Article  PubMed  CAS  Google Scholar 

  50. Nukaga M, Taniguchi K, Washio Y, Sawai T. Effect of an amino acid insertion into the omega loop region of a class C beta-lactamase on its substrate specificity. Biochemistry. 1998;37:10461–8.

    Article  PubMed  CAS  Google Scholar 

  51. Ahmed AM, Shimamoto T. Emergence of a cefepime- and cefpirome-resistant Citrobacter freundii clinical isolate harbouring a novel chromosomally encoded AmpC beta-lactamase, CMY-37. Int J Antimicrob Agents. 2008;32:256–61.

    Article  PubMed  CAS  Google Scholar 

  52. De Luca F, Benvenuti M, Carboni F, Pozzi C, Rossolini GM, Mangani S, et al. Evolution to carbapenem-hydrolyzing activity in noncarbapenemase class D-lactamase OXA-10 by rational protein design. Proc Natl Acad Sci USA. 2011;108:18424–9.

    Article  PubMed  Google Scholar 

  53. Danel F, Hall LMC, Gur D, Livermore DM. OXA-15, an extended-spectrum variant of OXA-2 β-lactamase, isolated from a Pseudomonas aeruginosa strain. Antimicrob Agents Chemother. 1997;41:785–90.

    PubMed  CAS  Google Scholar 

  54. Poirel L, Nordmann P. Carbapenem resistance in Acinetobacter baumannii: mechanisms and epidemiology. Clin Microbiol Infect. 2006;12:826–36.

    Article  PubMed  CAS  Google Scholar 

  55. Walther-Rasmussen J, Hoiby N. OXA-type carbapenemases. J Antimicrob Chemother. 2006;57:373–83.

    Article  PubMed  CAS  Google Scholar 

  56. Yang Y, Wu P, Livermore DM. Biochemical characterization of a β-lactamase that hydrolyzes penems and carbapenems for two Serratia marcescens isolates. Antimicrob Agents Chemother. 1990;34:755–8.

    Article  PubMed  CAS  Google Scholar 

  57. Mammeri H, Nordmann P, Berkani A, Eb F. Contribution of extended-spectrum AmpC (ESAC) beta-lactamases to carbapenem resistance in Escherichia coli. FEMS Microbiol Lett. 2008;282:238–40.

    Article  PubMed  CAS  Google Scholar 

  58. Philippon A, Labia R, Jacoby G. Extended-spectrum β-lactamases. Antimicrob Agents Chemother. 1989;33:1131–6.

    Article  PubMed  CAS  Google Scholar 

  59. Philippon A, Redjeb SB, Fournier G, Hassen AB. Epidemiology of extended spectrum β-lactamases. Infection. 1989;17:347–54.

    Article  PubMed  CAS  Google Scholar 

  60. Johnson AP, Weinbren MJ, Ayling-Smith B, Du Bois SK, Amyes SG, George RC. Outbreak of infection in two UK hospitals caused by a strain of Klebsiella pneumoniae resistant to cefotaxime and ceftazidime. J Hosp Infect. 1992;20:97–103.

    Article  PubMed  CAS  Google Scholar 

  61. Polsfuss S, Bloemberg GV, Giger J, Meyer V, Hombach M. Comparison of European Committee on Antimicrobial Susceptibility Testing (EUCAST) and CLSI screening parameters for the detection of extended-spectrum-lactamase production in clinical Enterobacteriaceae isolates. J Antimicrob Chemother. 2012;67:159–66.

    Article  PubMed  CAS  Google Scholar 

  62. Go ES, Urban C, Burns J, Kreiswirth B, Eisner W, Mariano N, et al. Clinical and molecular epidemiology of Acinetobacter infections sensitive only to polymyxin B and sulbactam. Lancet. 1994;344:1329–32.

    Article  PubMed  CAS  Google Scholar 

  63. Bethel CR, Hujer AM, Hujer KM, Thomson JM, Ruszczycky MW, Anderson VE, et al. Role of Asp104 in the SHV β-lactamase. Antimicrob Agents Chemother. 2006;50:4124–31.

    Article  PubMed  CAS  Google Scholar 

  64. Corvec S, Beyrouthy R, Crémet L, Aubin GG, Robin F, Bonnet R, et al. TEM-187, a new extended-spectrum β-lactamase with weak activity in a Proteus mirabilis clinical strain. Antimicrob Agents Chemother. 2013;57:2410–2.

    Article  PubMed  CAS  Google Scholar 

  65. Bonnet R. Growing group of extended-spectrum beta-lactamases: the CTX-M enzymes. Antimicrob Agents Chemother. 2004;48:1–14.

    Article  PubMed  CAS  Google Scholar 

  66. Matagne A, Misselyn-Baudin A-M, Joris B, Erpicum T, Graniwer B, Frere J-M. The diversity of the catalytic properties of class A β-lactamases. Biochem J. 1990;265:131–46.

    PubMed  CAS  Google Scholar 

  67. Livermore DM. Defining an extended-spectrum beta-lactamase. Clin Microbiol Infect. 2008;14(Suppl 1):3–10.

    Article  PubMed  CAS  Google Scholar 

  68. Giske CG, Sundsfjord AS, Kahlmeter G, Woodford N, Nordmann P, Paterson DL, et al. Redefining extended-spectrum β-lactamases: balancing science and clinical need. J Antimicrob Chemother. 2009;63:1–4.

    Article  PubMed  CAS  Google Scholar 

  69. Bush K, Jacoby GA, Amicosante G, Bonomo RA, Bradford P, Cornaglia G, et al. Comment on: redefining extended-spectrum beta-lactamases: balancing science and clinical need. J Antimicrob Chemother. 2009;64:212–3.

    Article  PubMed  CAS  Google Scholar 

  70. Vading M, Samuelsen O, Haldorsen B, Sundsfjord AS, Giske CG. Comparison of disk diffusion, Etest and VITEK2 for detection of carbapenemase-producing Klebsiella pneumoniae with the EUCAST and CLSI breakpoint systems. Clin Microbiol Infect. 2011;17:668–74.

    Article  PubMed  CAS  Google Scholar 

  71. Dubois V, Poirel L, Demarthe F, Arpin C, Coulange L, Minarini LA, et al. Molecular and biochemical characterization of SHV-56, a novel inhibitor-resistant beta-lactamase from Klebsiella pneumoniae. Antimicrob Agents Chemother. 2008;52:3792–4.

    Article  PubMed  CAS  Google Scholar 

  72. Jacoby GA. AmpC beta-lactamases. Clin Microbiol Rev. 2009;22:161–82.

    Article  PubMed  CAS  Google Scholar 

  73. Labia R, Gulonie M, Barthélémy M. Properties of three carbenicillin-hydrolyzing β-lactamases (CARB) from Pseudomonas aeruginosa: identification of a new enzyme. J Antimicrob Chemother. 1981;7:49–56.

    Article  PubMed  CAS  Google Scholar 

  74. Medeiros AA, Hedges RW, Jacoby GA. Spread of a “Pseudomonas-specific” β-lactamase to plasmids of enterobacteria. J Bacteriol. 1982;149:700–7.

    PubMed  CAS  Google Scholar 

  75. Lachapelle J, Dufresne J, Levesque RC. Characterization of the blaCARB-3 gene encoding the carbenicillinase-3 β-lactamase of Pseudomonas aeruginosa. Gene (Amst). 1991;102:7–12.

    Article  CAS  Google Scholar 

  76. Barthélémy M, Péduzzi J, Bernard H, Tancrède C, Labia R. Close amino acid sequence relationship between the new plasmid-mediated extended-spectrum β-lactamase MEN-1 and chromosomally encoded enzymes of Klebsiella oxytoca. Biochim Biophys Acta. 1992;1122:15–22.

    Article  PubMed  Google Scholar 

  77. Ishii Y, Ohno A, Taguchi H, Imajo S, Ishiguro M, Matsuzawa H. Cloning and sequence of the gene encoding a cefotaxime-hydrolyzing class A beta-lactamase isolated from Escherichia coli. Antimicrob Agents Chemother. 1995;39:2269–75.

    Article  PubMed  CAS  Google Scholar 

  78. Bauernfeind A, Stemplinger I, Jungwirth R, Ernst S, Casellas JM. Sequences of beta-lactamase genes encoding CTX-M-1 (MEN-1) and CTX-M-2 and relationship of their amino acid sequences with those of other beta-lactamases. Antimicrob Agents Chemother. 1996;40:509–13.

    PubMed  CAS  Google Scholar 

  79. Ma L, Ishii Y, Ishiguro M, Matsuzawa H, Yamaguchi K. Cloning and sequencing of the gene encoding Toho-2, a class A β-lactamase preferentially inhibited by tazobactam. Antimicrob Agents Chemother. 1998;42:1181–6.

    PubMed  CAS  Google Scholar 

  80. Medeiros AA, Cohenford M, Jacoby GA. Five novel plasmid-determined β-lactamases. Antimicrob Agents Chemother. 1985;27:715–9.

    Article  PubMed  CAS  Google Scholar 

  81. Girlich D, Naas T, Nordmann P. OXA-60, a chromosomal, inducible, and imipenem-hydrolyzing class D β-lactamase from Ralstonia pickettii. Antimicrob Agents Chemother. 2004;48:4217–25.

    Article  PubMed  CAS  Google Scholar 

  82. Lemozy J, Sirot D, Chanal C, Huc C, Labia R, Dabernat H, et al. First characterization of inhibitor-resistant TEM (IRT) beta-lactamase in Klebsiella pneumoniae strains. Antimicrob Agents Chemother. 1995;39:2580–2.

    Article  PubMed  CAS  Google Scholar 

  83. Bush K, Sykes RB. Methodology for the study of β-lactamases. Antimicrob Agents Chemother. 1986;30:6–10.

    Article  PubMed  CAS  Google Scholar 

  84. Livermore DM, Woodford N. Carbapenemases: a problem in waiting? Curr Opin Microbiol. 2000;3:489–95.

    Article  PubMed  CAS  Google Scholar 

  85. Matthew M, Harris AM, Marshall MJ, Ross GW. The use of isoelectric focusing for detection and identification of beta-lactamases. J Gen Microbiol. 1975;88:169–78.

    Article  Google Scholar 

  86. Payne DJ, Coleman K, Cramp R. The automated in vitro assessment of β-lactamase inhibitors. J Antimicrob Chemother. 1991;28:775–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The author has no conflict of interest that would affect the content of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen Bush.

About this article

Cite this article

Bush, K. The ABCD’s of β-lactamase nomenclature. J Infect Chemother 19, 549–559 (2013). https://doi.org/10.1007/s10156-013-0640-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10156-013-0640-7

Keywords

Navigation