Skip to main content

Advertisement

Log in

Pneumococcal vaccine and opsonic pneumococcal antibody

  • Review Article
  • Published:
Journal of Infection and Chemotherapy

Abstract

Streptococcus pneumoniae is a major human pathogen responsible for the majority of bacterial pneumonia cases as well as invasive pneumococcal diseases with high mortality and morbidity. Use of conjugate vaccines targeting the pneumococcal capsule has dramatically reduced the incidence of invasive diseases, and there are active efforts to further improve the conjugate vaccines. However, in children new pneumococcal vaccines can no longer be tested with placebo-based clinical trials because effective vaccines are currently available. Thus, vaccine studies must depend on surrogate markers of vaccine efficacy. Although traditional antibody levels (e.g., ELISA) are useful as a surrogate marker of protection, they have limitations, and a bioassay measuring the capacity of antibodies to opsonize pneumococci has been developed. This opsonophagocytosis assay (OPA) replicates the in vivo mechanism of antibody protection and should therefore better reflect protection by vaccine-induced antibodies. Technical improvements of OPA have made this bioassay rapid, multiplexed, and practical for analyzing small samples including those from children. Strong correlations between ELISA and OPA have been observed in many studies of young children. However, poor correlations have been found in some important clinical situations (such as determination of protection by cross-reactive antibodies) and populations (such as elderly adults and immunodeficient patients). In these settings, OPA has become a useful supplementary measure of pneumococcal vaccine immunogenicity. Current efforts to standardize OPA will further expand its uses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WHO. Pneumococcal conjugate vaccine for childhood immunization—WHO position paper. Wkly Epidemiol Rec. 2007;82:93–104.

    Google Scholar 

  2. O’Brien KL, Wolfson LJ, Watt JP, Henkle E, Deloria-Knoll M, McCall N, et al. Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years: global estimates. Lancet. 2009;374:893–902.

    Article  PubMed  Google Scholar 

  3. Huang SS, Johnson KM, Ray GT, Wroe P, Lieu TA, Moore MR, et al. Healthcare utilization and cost of pneumococcal disease in the United States. Vaccine. 2011;29:3398–412.

    Article  PubMed  Google Scholar 

  4. Whitney CG, Pilishvili T, Farley MM, Schaffner W, Craig AS, Lynfield R, et al. Effectiveness of seven-valent pneumococcal conjugate vaccine against invasive pneumococcal disease: a matched case-control study. Lancet. 2006;368:1495–502.

    Article  PubMed  CAS  Google Scholar 

  5. Avery OT, Dubos R. The protective action of a specific enzyme against type III pneumococcus infection in mice. J Exp Med. 1931;54:73–89.

    Article  PubMed  CAS  Google Scholar 

  6. Henrichsen J. Six newly recognized types of Streptococcus pneumoniae. J Clin Microbiol. 1995;33:2759–62.

    PubMed  CAS  Google Scholar 

  7. Park IH, Pritchard DG, Cartee R, Brandao A, Brandileone MC, Nahm MH. Discovery of a new capsular serotype (6C) within serogroup 6 of Streptococcus pneumoniae. J Clin Microbiol. 2007;45:1225–33.

    Article  PubMed  CAS  Google Scholar 

  8. Robbins JB, Austrian R, Lee CJ, Rastogi SC, Schiffman G, Henrichsen J, et al. Considerations for formulating the second-generation pneumococcal capsular polysaccharide vaccine with emphasis on the cross-reactive types within groups. J Infect Dis. 1983;148:1136–59.

    Article  PubMed  CAS  Google Scholar 

  9. Shinefield HR, Black S, Ray P, Chang I, Lewis N, Fireman B, et al. Safety and immunogenicity of heptavalent pneumococcal CRM197 conjugate vaccine in infants and toddlers. Pediatr Infect Dis J. 1999;18(9):757–63.

    Article  PubMed  CAS  Google Scholar 

  10. Jodar L, Butler JC, Carlone G, Dagan R, Frasch CE, Goldblatt D, et al. Serological criteria for evaluation and licensure of pneumococcal conjugate vaccine formulations for use in infants. Vaccine. 2003;21:3265–72.

    Article  PubMed  CAS  Google Scholar 

  11. Siber GR, Chang I, Baker S, Fernsten P, O’Brien KL, Santosham M, et al. Estimating the protective concentration of anti-pneumococcal capsular polysaccharide antibodies. Vaccine. 2007;25:3816–26.

    Article  PubMed  CAS  Google Scholar 

  12. Henckaerts I, Goldblatt D, Ashton L, Poolman J. Critical differences between pneumococcal polysaccharide enzyme-linked immunosorbent assays with and without 22F inhibition at low antibody concentrations in pediatric sera. Clin Vaccine Immunol. 2006;13:356–60.

    Article  PubMed  CAS  Google Scholar 

  13. Wernette CM, Frasch CE, Madore D, Carlone G, Goldblatt D, Plikaytis B, et al. Enzyme-linked immunosorbent assay for quantitation of human antibodies to pneumococcal polysaccharides. Clin Diagn Lab Immunol. 2003;10:514–9.

    PubMed  CAS  Google Scholar 

  14. Park S, Nahm MH. Older adults have a low capacity to opsonize pneumococci due to low IgM antibody response to pneumococcal vaccinations. Infect Immun. 2011;79:314–20.

    Article  PubMed  CAS  Google Scholar 

  15. Simell B, Nurkka A, Ekstrom N, Givon-Lavi N, Kayhty H, Dagan R. Serum IgM antibodies contribute to high levels of opsonophagocytic activities in toddlers immunized with a single dose of the 9-valent pneumococcal conjugate vaccine. Clin Vaccine Immunol. 2012;19:1618–23.

    Article  PubMed  CAS  Google Scholar 

  16. Parkkali T, Vakevainen M, Kayhty H, Ruutu T, Ruutu P. Opsonophagocytic activity against Streptococcus pneumoniae type 19F in allogeneic BMT recipients before and after vaccination with pneumococcal polysaccharide vaccine. Bone Marrow Transplant. 2001;27:207–11.

    Article  PubMed  CAS  Google Scholar 

  17. Shatz DV, Schinsky MF, Pais LB, Romero-Steiner S, Kirton OC, Carlone GM. Immune responses of splenectomized trauma patients to the 23-valent pneumococcal polysaccharide vaccine at 1 versus 7 versus 14 days after splenectomy. J Trauma. 1998;44:760–5.

    Article  PubMed  CAS  Google Scholar 

  18. Lee H, Nahm MH, Burton R, Kim KH. Immune response in infants to the heptavalent pneumococcal conjugate vaccine against vaccine-related serotypes 6A and 19A. Clin Vaccine Immunol. 2009;16:376–81.

    Article  PubMed  CAS  Google Scholar 

  19. Oishi T, Ishiwada N, Matsubara K, Nishi J, Chang B, Tamura K, et al. Low opsonic activity to the infecting serotype in pediatric patients with invasive pneumococcal disease. Vaccine. 2013;31:845–9.

    Article  PubMed  CAS  Google Scholar 

  20. Centers for disease control and prevention (CDC). Invasive pneumococcal disease in children 5 years after conjugate vaccine introduction—eight states, 1998–2005. MMWR Morb Mortal Wkly Rep. 2008;57:144–8.

  21. Stuart LM, Ezekowitz RA. Phagocytosis: elegant complexity. Immunity. 2005;22:539–50.

    Article  PubMed  CAS  Google Scholar 

  22. Chroneos ZC, Sever-Chroneos Z, Shepherd VL. Pulmonary surfactant: an immunological perspective. Cell Physiol Biochem. 2010;25:13–26.

    Article  PubMed  CAS  Google Scholar 

  23. Caron E, Hall A. Identification of two distinct mechanisms of phagocytosis controlled by different Rho GTPases. Science. 1998;282:1717–21.

    Article  PubMed  CAS  Google Scholar 

  24. Hampton MB, Winterbourn CC. Methods for quantifying phagocytosis and bacterial killing by human neutrophils. J Immunol Methods. 1999;232:15–22.

    Article  PubMed  CAS  Google Scholar 

  25. Johansson PJ, Sternby E, Ursing B. Septicemia in granulocytopenic patients: a shift in bacterial etiology. Scand J Infect Dis. 1992;24:357–60.

    Article  PubMed  CAS  Google Scholar 

  26. Nahm MH, Blaese RM, Crain MJ, Briles DE. Patients with Wiskott–Aldrich syndrome have normal IgG2 levels. J Immunol. 1986;137:3484–7.

    PubMed  CAS  Google Scholar 

  27. Ram S, Lewis LA, Rice PA. Infections of people with complement deficiencies and patients who have undergone splenectomy. Clin Microbiol Rev. 2010;23:740–80.

    Article  PubMed  CAS  Google Scholar 

  28. Jansen WT, Gootjes J, Zelle M, Madore DV, Verhoef J, Snippe H, et al. Use of highly encapsulated Streptococcus pneumoniae strains in a flow-cytometric assay for assessment of the phagocytic capacity of serotype-specific antibodies. Clin Diagn Lab Immunol. 1998;5:703–10.

    PubMed  CAS  Google Scholar 

  29. Martinez JE, Clutterbuck EA, Li H, Romero-Steiner S, Carlone GM. Evaluation of multiplex flow cytometric opsonophagocytic assays for determination of functional anticapsular antibodies to Streptococcus pneumoniae. Clin Vaccine Immunol. 2006;13:459–66.

    Article  PubMed  CAS  Google Scholar 

  30. Romero-Steiner S, Frasch CE, Carlone G, Fleck RA, Goldblatt D, Nahm MH. Use of opsonophagocytosis for serological evaluation of pneumococcal vaccines. Clin Vaccine Immunol. 2006;13:165–9.

    Article  PubMed  CAS  Google Scholar 

  31. Romero-Steiner S, Libutti D, Pais LB, Dykes J, Anderson P, Whitin JC, et al. Standardization of an opsonophagocytic assay for the measurement of functional antibody activity against Streptococcus pneumoniae using differentiated HL-60 cells. Clin Diagn Lab Immunol. 1997;4:415–22.

    PubMed  CAS  Google Scholar 

  32. Fleck RA, Romero-Steiner S, Nahm MH. Use of HL-60 cell line to measure opsonic capacity of pneumococcal antibodies. Clin Diagn Lab Immunol. 2005;12:19–27.

    PubMed  CAS  Google Scholar 

  33. Kim KH, Yu J, Nahm MH. Efficiency of a pneumococcal opsonophagocytic killing assay improved by multiplexing and by coloring colonies. Clin Diagn Lab Immunol. 2003;10:616–21.

    PubMed  CAS  Google Scholar 

  34. Bogaert D, Sluijter M, De Groot R, Hermans PW. Multiplex opsonophagocytosis assay (MOPA): a useful tool for the monitoring of the 7-valent pneumococcal conjugate vaccine. Vaccine. 2004;22:4014–20.

    Article  PubMed  CAS  Google Scholar 

  35. Burton RL, Nahm MH. Development and validation of a fourfold multiplexed opsonization assay (MOPA4) for pneumococcal antibodies. Clin Vaccine Immunol. 2006;13:1004–9.

    Article  PubMed  CAS  Google Scholar 

  36. Burton RL, Nahm MH. Development of a fourfold multiplexed opsonophagocytosis assay for pneumococcal antibodies against additional serotypes and discovery of serological subtypes in Streptococcus pneumoniae serotype 20. Clin Vaccine Immunol. 2012;19:835–41.

    Article  PubMed  CAS  Google Scholar 

  37. Nahm MH, Romero-Steiner S. Functional assays for pneumococcal antibody. In: Siber GR, Klugman KP, Makela PH, editors. Pneumococcal vaccines: the impact of conjugate vaccine. Washington, DC: ASM Press; 2008. p. 213–26.

    Google Scholar 

  38. Vesikari T, Wysocki J, Chevallier B, Karvonen A, Czajka H, Arsene JP, et al. Immunogenicity of the 10-valent pneumococcal non-typeable Haemophilus influenzae protein D conjugate vaccine (PHiD-CV) compared to the licensed 7vCRM vaccine. Pediatr Infect Dis J. 2009;28:S66–76.

    Article  PubMed  Google Scholar 

  39. Kim CH, Kim JS, Cha SH, Kim KN, Kim JD, Lee KY, et al. Response to primary and booster vaccination with 10-valent pneumococcal nontypeable Haemophilus influenzae protein D conjugate vaccine in Korean infants. Pediatr Infect Dis J. 2011;30:e235–43.

    Article  PubMed  Google Scholar 

  40. Kieninger DM, Kueper K, Steul K, Juergens C, Ahlers N, Baker S, et al. Safety, tolerability, and immunologic noninferiority of a 13-valent pneumococcal conjugate vaccine compared to a 7-valent pneumococcal conjugate vaccine given with routine pediatric vaccinations in Germany. Vaccine. 2010;28:4192–203.

    Article  PubMed  CAS  Google Scholar 

  41. Yeh SH, Gurtman A, Hurley DC, Block SL, Schwartz RH, Patterson S, et al. Immunogenicity and safety of 13-valent pneumococcal conjugate vaccine in infants and toddlers. Pediatrics. 2010;126:e493–505.

    Article  PubMed  Google Scholar 

  42. Dagan RPS, Juergens C, Greenberg D, Givon-Lavi N, Gurtman A, Kohberger R, Gruber WC, Scott DA. The efficacy of the 13-valent pneumococcal conjugate vaccine (PCV13) additional serotypes on nasopharyngeal colonization: a randomized double-blind pediatric trial. ISPPD-8 Poster #312 2012.

  43. Romero-Steiner S, Musher DM, Cetron MS, Pais LB, Groover JE, Fiore AF, et al. Reduction in functional antibody activity against Streptococcus pneumoniae in vaccinated elderly individuals highly correlates with decreased IgG antibody avidity. Clin Infect Dis. 1999;29:281–8.

    Article  PubMed  CAS  Google Scholar 

  44. Schenkein JG, Park S, Nahm MH. Pneumococcal vaccination in older adults induces antibodies with low opsonic capacity and reduced antibody potency. Vaccine. 2008;26:5521–6.

    Article  PubMed  CAS  Google Scholar 

  45. de Roux A, Schmole-Thoma B, Siber GR, Hackell JG, Kuhnke A, Ahlers N, et al. Comparison of pneumococcal conjugate polysaccharide and free polysaccharide vaccines in elderly adults: conjugate vaccine elicits improved antibacterial immune responses and immunological memory. Clin Infect Dis. 2008;46:1015–23.

    Article  PubMed  Google Scholar 

  46. Scott DA, Komjathy SF, Hu BT, Baker S, Supan LA, Monahan CA, et al. Phase 1 trial of a 13-valent pneumococcal conjugate vaccine in healthy adults. Vaccine. 2007;25:6164–6.

    Article  PubMed  CAS  Google Scholar 

  47. Jackson LA, Neuzil KM, Nahm MH, Whitney CG, Yu O, Nelson JC, et al. Immunogenicity of varying dosages of 7-valent pneumococcal polysaccharide-protein conjugate vaccine in seniors previously vaccinated with 23-valent pneumococcal polysaccharide vaccine. Vaccine. 2007;25:4029–37.

    Article  PubMed  CAS  Google Scholar 

  48. Miernyk KM, Butler JC, Bulkow LR, Singleton RJ, Hennessy TW, Dentinger CM, et al. Immunogenicity and reactogenicity of pneumococcal polysaccharide and conjugate vaccines in Alaska native adults 55–70 years of age. Clin Infect Dis. 2009;49:241–8.

    Article  PubMed  CAS  Google Scholar 

  49. Musher DM, Rueda AM, Nahm MH, Graviss EA, Rodriguez-Barradas MC. Initial and subsequent response to pneumococcal polysaccharide and protein-conjugate vaccines administered sequentially to adults who have recovered from pneumococcal pneumonia. J Infect Dis. 2008;198:1019–27.

    Article  PubMed  CAS  Google Scholar 

  50. Frenck RW Jr, Gurtman A, Rubino J, Smith W, van Cleeff M, Jayawardene D, et al. Randomized, controlled trial of a 13-valent pneumococcal conjugate vaccine administered concomitantly with an influenza vaccine in healthy adults. Clin Vaccine Immunol. 2012;19:1296–303.

    Article  PubMed  CAS  Google Scholar 

  51. O’Brien KL, Hochman M, Goldblatt D. Combined schedules of pneumococcal conjugate and polysaccharide vaccines: is hyporesponsiveness an issue? Lancet Infect Dis. 2007;7:597–606.

    Article  PubMed  Google Scholar 

  52. Nunes MC, Madhi SA. Safety, immunogenicity and efficacy of pneumococcal conjugate vaccine in HIV-infected individuals. Hum Vaccines Immunother. 2012;8:161–73.

    Article  CAS  Google Scholar 

  53. Feikin DR, Elie CM, Goetz MB, Lennox JL, Carlone GM, Romero-Steiner S, et al. Randomized trial of the quantitative and functional antibody responses to a 7-valent pneumococcal conjugate vaccine and/or 23-valent polysaccharide vaccine among HIV-infected adults. Vaccine. 2001;20:545–53.

    Article  PubMed  CAS  Google Scholar 

  54. Fedson DS, Musher DM. Pneumococcal vaccine. In: Plotkin SA, Mortimer EA, editors. Vaccines. 2nd ed. Philadelphia: Saunders; 1994. p. 517–64.

    Google Scholar 

  55. Linnemann CC Jr, First MR. Risk of pneumococcal infections in renal transplant patients. JAMA. 1979;241:2619–21.

    Article  PubMed  Google Scholar 

  56. Kumar D, Rotstein C, Miyata G, Arlen D, Humar A. Randomized, double-blind, controlled trial of pneumococcal vaccination in renal transplant recipients. J Infect Dis. 2003;187:1639–45.

    Article  PubMed  Google Scholar 

  57. Kyaw MH, Rose CE Jr, Fry AM, Singleton JA, Moore Z, Zell ER, et al. The influence of chronic illnesses on the incidence of invasive pneumococcal disease in adults. J Infect Dis. 2005;192:377–86.

    Article  PubMed  Google Scholar 

  58. Granger R, Walters J, Poole PJ, Lasserson TJ, Mangtani P, Cates CJ, et al. Injectable vaccines for preventing pneumococcal infection in patients with chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2006;CD001390.

  59. Dransfield MT, Harnden S, Burton RL, Albert RK, Bailey WC, Casaburi R, et al. Long-term comparative immunogenicity of protein conjugate and free polysaccharide pneumococcal vaccines in chronic obstructive pulmonary disease. Clin Infect Dis. 2012;55:e35–44.

    Article  PubMed  CAS  Google Scholar 

  60. Romero-Steiner S, Frasch C, Concepcion N, Goldblatt D, Kayhty H, Vakevainen M, et al. Multilaboratory evaluation of a viability assay for measurement of opsonophagocytic antibodies specific to the capsular polysaccharides of Streptococcus pneumoniae. Clin Diagn Lab Immunol. 2003;10:1019–24.

    PubMed  CAS  Google Scholar 

  61. Kamtchoua T, Bologa M, Hopfer R, Neveu D, Hu B, Sheng X, et al. Safety and immunogenicity of the pneumococcal pneumolysin derivative PlyD1 in a single-antigen protein vaccine candidate in adults. Vaccine. 2013;31:327–33.

    Article  PubMed  CAS  Google Scholar 

  62. Lu L, Ma Z, Jokiranta TS, Whitney AR, DeLeo FR, Zhang JR. Species-specific interaction of Streptococcus pneumoniae with human complement factor H. J Immunol. 2008;181:7138–46.

    PubMed  CAS  Google Scholar 

  63. Mukerji R, Mirza S, Roche AM, Widener RW, Croney CM, Rhee DK, et al. Pneumococcal surface protein A inhibits complement deposition on the pneumococcal surface by competing with the binding of C-reactive protein to cell-surface phosphocholine. J Immunol. 2012;189:5327–35.

    Article  PubMed  CAS  Google Scholar 

  64. Musher DM. Editorial commentary: Should 13-valent protein-conjugate pneumococcal vaccine be used routinely in adults? Clin Infect Dis. 2012;55:265–7.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NIH funding AI-31473 and AI-30021. We thank Dr. Mark Dransfield for his critical reading of this manuscript.

Conflict of interest

U.A.B. owns intellectual property on the various reagents used for pneumococcal vaccine studies, and M.H.N. and R.L.B. are U.A.B. employees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moon H. Nahm.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 78 kb)

About this article

Cite this article

Song, J.Y., Moseley, M.A., Burton, R.L. et al. Pneumococcal vaccine and opsonic pneumococcal antibody. J Infect Chemother 19, 412–425 (2013). https://doi.org/10.1007/s10156-013-0601-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10156-013-0601-1

Keywords

Navigation