Skip to main content

Advertisement

Log in

Practice guidelines for therapeutic drug monitoring of vancomycin: a consensus review of the Japanese Society of Chemotherapy and the Japanese Society of Therapeutic Drug Monitoring

  • Guideline
  • Published:
Journal of Infection and Chemotherapy

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Geraci JE, Heilman FR, Nichols DR, Ross GT, Wellman WE. Some laboratory and clinical experiences with a new antibiotic, vancomycin. Proc Staff Meet Mayo Clin. 1956;31:564–82.

    PubMed  CAS  Google Scholar 

  2. Geraci JE, Heilman FR, Nichols DR, Wellman WE. Antibiotic therapy of bacterial endocarditis. VII. Vancomycin for acute micrococcal endocarditis; preliminary report. Proc Staff Meet Mayo Clin. 1958;33:172–81.

    PubMed  CAS  Google Scholar 

  3. Kirby WM, Perry DM, Bauer AW. Treatment of staphylococcal septicemia with vancomycin: report of thirty-three cases. N Engl J Med. 1960;262:49–55.

    Article  PubMed  CAS  Google Scholar 

  4. Sorrell TC, Packham DR, Shanker S, Foldes M, Munro R. Vancomycin therapy for methicillin-resistant Staphylococcus aureus. Ann Intern Med. 1982;97:344–50.

    Article  PubMed  CAS  Google Scholar 

  5. Levine DP. Vancomycin: a history. Clin Infect Dis. 2006;42:S5–12.

    Article  PubMed  CAS  Google Scholar 

  6. Rybak MJ, Bailey EM, Warbasse LH. Absence of “red man syndrome” in patients being treated with vancomycin or high-dose teicoplanin. Antimicrob Agents Chemother. 1992;36:1204–7.

    Article  PubMed  CAS  Google Scholar 

  7. Bergman MM, Glew RH, Ebert TH. Acute interstitial nephritis associated with vancomycin therapy. Arch Intern Med. 1988;148:2139–40.

    Article  PubMed  CAS  Google Scholar 

  8. Cimino MA, Rotstein C, Slaughter RL, Emrich LJ. Relationship of serum antibiotic concentrations to nephrotoxicity in cancer patients receiving concurrent aminoglycoside and vancomycin therapy. Am J Med. 1987;83:1091–7.

    Article  PubMed  CAS  Google Scholar 

  9. Rybak MJ, Albrecht LM, Boike SC, Chandrasekar PH. Nephrotoxicity of vancomycin, alone and with an aminoglycoside. J Antimicrob Chemother. 1990;25:679–87.

    Article  PubMed  CAS  Google Scholar 

  10. Traber PG, Levine DP. Vancomycin ototoxicity in patient with normal renal function. Ann Intern Med. 1981;95:458–60.

    Article  PubMed  CAS  Google Scholar 

  11. Darko W, Medicis JJ, Smith A, Guharoy R, Lehmann DE. Mississippi mud no more: cost-effectiveness of pharmacokinetic dosage adjustment of vancomycin to prevent nephrotoxicity. Pharmacotherapy. 2003;23:643–50.

    Article  PubMed  Google Scholar 

  12. Cantú TG, Yamanaka-Yuen NA, Lietman PS. Serum vancomycin concentrations: reappraisal of their clinical value. Clin Infect Dis. 1994;18:533–43.

    Article  PubMed  Google Scholar 

  13. Brummett RE, Fox KE. Vancomycin- and erythromycin-induced hearing loss in humans. Antimicrob Agents Chemother. 1989;33:791–6.

    Article  PubMed  CAS  Google Scholar 

  14. Rybak M, Lomaestro B, Rotschafer JC, Moellering R Jr, Craig W, Billeter M, et al. Therapeutic monitoring of vancomycin in adult patients: a consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Am J Health Syst Pharm. 2009;66:82–98.

    Article  PubMed  CAS  Google Scholar 

  15. Liu C, Bayer A, Cosgrove SE, Daum RS, Fridkin SK, Gorwitz RJ, et al. Infectious Diseases Society of America. Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis. 2011;52:e18–55.

    Article  PubMed  Google Scholar 

  16. Kobayashi M, Takesue Y, Tanigawara Y, Mikamo H, Kimura T, Hirata S, et al. Therapeutic drug monitoring survey of anti-MRSA agents in Japan. Jpn J Chemother. 2010;58:119–24.

    Google Scholar 

  17. Canadian Task Force on the Periodic Health Examination. The periodic health examination. Can Med Assoc J. 1979;121:1193–254.

    Google Scholar 

  18. Pritchard L, Baker C, Leggett J, Sehdev P, Brown A, Bayley KB. Increasing vancomycin serum trough concentrations and incidence of nephrotoxicity. Am J Med. 2010;123:1143–9.

    Article  PubMed  CAS  Google Scholar 

  19. Teramachi H, Hatakeyama H, Matsushita R, Imai Y, Miyamoto K, Tsuji A. Evaluation of predictability for vancomycin dosage regimens by the Bayesian method with Japanese population pharmacokinetic parameters. Biol Pharm Bull. 2002;25:1333–8.

    Article  PubMed  CAS  Google Scholar 

  20. Nunn MO, Corallo CE, Aubron C, Poole S, Dooley MJ, Cheng AC. Vancomycin dosing: assessment of time to therapeutic concentration and predictive accuracy of pharmacokinetic modeling software. Ann Pharmacother. 2011;45:757–63.

    Article  PubMed  CAS  Google Scholar 

  21. Vandecasteele SJ, De Vriese AS. Recent changes in vancomycin use in renal failure. Kidney Int. 2010;77:760–4.

    Article  PubMed  CAS  Google Scholar 

  22. Wong-Beringer A, Joo J, Tse E, Beringer P. Vancomycin-associated nephrotoxicity: a critical appraisal of risk with high-dose therapy. Int J Antimicrob Agents. 2011;37:95–101.

    Article  PubMed  CAS  Google Scholar 

  23. Niidome S, Kusano M, Karino M, Jingami S, Fukunaga E, Miyamura S, et al. Evaluation of various kidney functions equations for dose setting of vancomycin corrected by various parameters of physical constitutions. Jpn J Ther Drug Monit. 2011;28:92–101.

    Google Scholar 

  24. Moise-Broder PA, Forrest A, Birmingham MC, Schentag JJ. Pharmacodynamics of vancomycin and other antimicrobials in patients with Staphylococcus aureus lower respiratory tract infections. Clin Pharmacokinet. 2004;43:925–42.

    Article  PubMed  CAS  Google Scholar 

  25. Kullar R, Davis SL, Levine DP, Rybak MJ. Impact of vancomycin exposure on outcomes in patients with methicillin-resistant Staphylococcus aureus bacteremia: support for consensus guidelines suggested targets. Clin Infect Dis. 2011;52:975–81.

    Article  PubMed  CAS  Google Scholar 

  26. Saunders NJ. Why monitor peak vancomycin concentrations? Lancet. 1994;344:1748–50.

    Article  PubMed  CAS  Google Scholar 

  27. Forouzesh A, Moise PA, Sakoulas G. Vancomycin ototoxicity: a reevaluation in an era of increasing doses. Antimicrob Agents Chemother. 2009;53:483–6.

    Article  PubMed  CAS  Google Scholar 

  28. Winter ME. Basic principles. In: Winter ME, editor. Basic clinical pharmacokinetics. 5th ed. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins; 2010. p. 2–132.

    Google Scholar 

  29. Rowland M, Tozer TN. Therapeutic regimens. In: Rowland M, Tozer TN, editors. Clinical pharmacokinetics and pharmacodynamics. Concepts and allocations. 4th ed. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins; 2011. p. 245–329.

  30. Yasuhara M, Iga T, Zenda H, Okumura K, Oguma T, Yano Y, et al. Population pharmacokinetics of vancomycin in Japanese adult patients. Ther Drug Monit. 1998;20:139–48.

    Article  PubMed  CAS  Google Scholar 

  31. Rodvold KA, Blum RA, Fischer JH, Zokufa HZ, Rotschafer JC, Crossley KB, et al. Vancomycin pharmacokinetics in patients with various degrees of renal function. Antimicrob Agents Chemother. 1988;32:848–52.

    Article  PubMed  CAS  Google Scholar 

  32. Takahashi Y, Takesue Y, Takubo S, Ishihara M, Nakajima K, Tsuchida T, et al. Preferable timing of therapeutic drug monitoring in patients with impaired renal function treated with once daily administration of vancomycin. J Infect Chemother 2013 (Epub ahead of print).

  33. Patel N, Pai MP, Rodvold KA, Lomaestro B, Drusano GL, Lodise TP. Vancomycin: we can’t get there from here. Clin Infect Dis. 2011;52:969–74.

    Article  PubMed  CAS  Google Scholar 

  34. Niki Y, Hanaki H, Matsumoto T, Yagisawa M, Kohno S, Aoki N, et al. Nationwide surveillance of bacterial respiratory pathogens conducted by the Japanese Society of Chemotherapy in 2008: general view of the pathogens’ antibacterial susceptibility. J Infect Chemother. 2011;17:510–23.

    Article  PubMed  Google Scholar 

  35. Mohr JF, Murray BE. Point: Vancomycin is not obsolete for the treatment of infection caused by methicillin-resistant Staphylococcus aureus. Clin Infect Dis. 2007;44:1536–42.

    Article  PubMed  CAS  Google Scholar 

  36. Christiansen K, Currie B, Ferguson J, Franks G, Garland S, Grayson L, et al. Therapeutic guidelines: antibiotic. 14th ed. Melbourne: Therapeutic Guidelines Limited; 2010.

    Google Scholar 

  37. Howden BP, Ward PB, Charles PG, Korman TM, Fuller A, du Cros P, et al. Treatment outcomes for serious infections caused by methicillin-resistant Staphylococcus aureus with reduced vancomycin susceptibility. Clin Infect Dis. 2004;38:521–8.

    Article  PubMed  CAS  Google Scholar 

  38. Sakoulas G, Gold HS, Cohen RA, Venkataraman L, Moellering RC, Eliopoulos GM. Effects of prolonged vancomycin administration on methicillin-resistant Staphylococcus aureus (MRSA) in a patient with recurrent bacteraemia. J Antimicrob Chemother. 2006;57:699–704.

    Article  PubMed  CAS  Google Scholar 

  39. Charles PG, Ward PB, Johnson PD, Howden BP, Grayson ML. Clinical features associated with bacteremia due to heterogeneous vancomycin-intermediate Staphylococcus aureus. Clin Infect Dis. 2004;38:448–51.

    Article  PubMed  Google Scholar 

  40. Lodise TP, Patel N, Lomaestro BM, Rodvold KA, Drusano GL. Relationship between initial vancomycin concentration-time profile and nephrotoxicity among hospitalized patients. Clin Infect Dis. 2009;49:507–14.

    Article  PubMed  CAS  Google Scholar 

  41. Wunderink RG, Niederman MS, Kollef MH, Shorr AF, Kunkel MJ, Baruch A, et al. Linezolid in methicillin-resistant Staphylococcus aureus nosocomial pneumonia: a randomized controlled Study. Clin Infect Dis. 2012;54:621–9.

    Article  PubMed  CAS  Google Scholar 

  42. Jeffres MN, Isakow W, Doherty JA, Micek ST, Kollef MH. A retrospective analysis of possible renal toxicity associated with vancomycin in patients with health care-associated methicillin-resistant Staphylococcus aureus pneumonia. Clin Ther. 2007;29:1107–15.

    Article  PubMed  CAS  Google Scholar 

  43. Blouin RA, Bauer LA, Miller DD, Record KE, Griffen WO Jr. Vancomycin pharmacokinetics in normal and morbidly obese subjects. Antimicrob Agents Chemother. 1982;21:575–80.

    Article  PubMed  CAS  Google Scholar 

  44. Lodise TP, Lomaestro B, Graves J, Drusano GL. Larger vancomycin doses (at least four grams per day) are associated with an increased incidence of nephrotoxicity. Antimicrob Agents Chemother. 2008;52:1330–6.

    Article  PubMed  CAS  Google Scholar 

  45. Itani KM, Biswas P, Reisman A, Bhattacharyya H, Baruch AM. Clinical efficacy of oral linezolid compared with intravenous vancomycin for the treatment of methicillin-resistant Staphylococcus aureus-complicated skin and soft tissue infections: a retrospective, propensity score-matched, case-control analysis. Clin Ther. 2012;34:1667–73.

    Article  PubMed  CAS  Google Scholar 

  46. Itani KM, Dryden MS, Bhattacharyya H, Kunkel MJ, Baruch AM, Weigelt JA. Efficacy and safety of linezolid versus vancomycin for the treatment of complicated skin and soft-tissue infections proven to be caused by methicillin-resistant Staphylococcus aureus. Am J Surg. 2010;199:804–16.

    Article  PubMed  CAS  Google Scholar 

  47. Fowler VG Jr, Boucher HW, Corey GR, Abrutyn E, Karchmer AW, Rupp ME, et al. Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus. N Engl J Med. 2006;355:653–65.

    Article  PubMed  CAS  Google Scholar 

  48. Leu WJ, Liu YC, Wang HW, Chien HY, Liu HP, Lin YM. Evaluation of a vancomycin dosing nomogram in achieving high target trough concentrations in Taiwanese patients. Int J Infect Dis. 2012;16:e804–10.

    Article  PubMed  CAS  Google Scholar 

  49. Ingram PR, Lye DC, Tambyah PA, Goh WP, Tam VH, Fisher DA. Risk factors for nephrotoxicity associated with continuous vancomycin infusion in outpatient parenteral antibiotic therapy. J Antimicrob Chemother. 2008;62:168–71.

    Article  PubMed  CAS  Google Scholar 

  50. Ingram PR, Lye DC, Fisher DA, Goh WP, Tam VH. Nephrotoxicity of continuous versus intermittent infusion of vancomycin in outpatient parenteral antimicrobial therapy. Int J Antimicrob Agents. 2009;34:570–4.

    Article  PubMed  CAS  Google Scholar 

  51. Hutschala D, Kinstner C, Skhirdladze K, Thalhammer F, Müller M, Tschernko E. Influence of vancomycin on renal function in critically ill patients after cardiac surgery: continuous versus intermittent infusion. Anesthesiology. 2009;111:356–65.

    Article  PubMed  CAS  Google Scholar 

  52. Cataldo MA, Tacconelli E, Grilli E, Pea F, Petrosillo N. Continuous versus intermittent infusion of vancomycin for the treatment of gram-positive infections: systematic review and meta-analysis. J Antimicrob Chemother. 2012;67:17–24.

    Article  PubMed  CAS  Google Scholar 

  53. Vuagnat A, Stern R, Lotthe A, Schuhmacher H, Duong M, Hoffmeyer P, et al. High dose vancomycin for osteomyelitis: continuous vs. intermittent infusion. J Clin Pharm Ther. 2004;29:351–7.

    Article  PubMed  CAS  Google Scholar 

  54. Healy DP, Sahai JV, Fuller SH, Polk RE. Vancomycin-induced histamine release and “red man syndrome”: comparison of 1- and 2-hour infusions. Antimicrob Agents Chemother. 1990;34:550–4.

    Article  PubMed  CAS  Google Scholar 

  55. Healy DP, Polk RE, Garson ML, Rock DT, Comstock TJ. Comparison of steady-state pharmacokinetics of two dosage regimens of vancomycin in normal volunteers. Antimicrob Agents Chemother. 1987;31:393–7.

    Article  PubMed  CAS  Google Scholar 

  56. van Hal SJ, Paterson DL, Lodise TP. Systematic review and meta-analysis of vancomycin-induced nephrotoxicity associated with dosing schedules that maintain troughs between 15 and 20 milligrams per liter. Antimicrob Agents Chemother. 2013;57:734–44.

    Article  PubMed  CAS  Google Scholar 

  57. Hazlewood KA, Brouse SD, Pitcher WD, Hall RG. Vancomycin-associated nephrotoxicity: grave concern or death by character assassination? Am J Med. 2010;123:182.e1–7.

    Google Scholar 

  58. Hidayat LK, Hsu DI, Quist R, Shriner KA, Wong-Beringer A. High-dose vancomycin therapy for methicillin-resistant Staphylococcus aureus infections: efficacy and toxicity. Arch Intern Med. 2006;166:2138–44.

    Article  PubMed  Google Scholar 

  59. Wang JT, Fang CT, Chen YC, Chang SC. Necessity of a loading dose when using vancomycin in critically ill patients. J Antimicrob Chemother. 2001;47:246.

    Article  PubMed  CAS  Google Scholar 

  60. Li J, Udy AA, Kirkpatrick CM, Lipman J, Roberts JA. Improving vancomycin prescription in critical illness through a drug use evaluation process: a weight-based dosing intervention study. Int J Antimicrob Agents. 2012;39:69–72.

    Article  PubMed  CAS  Google Scholar 

  61. Truong J, Levkovich BJ, Padiglione AA. Simple approach to improving vancomycin dosing in intensive care: a standardised loading dose results in earlier therapeutic levels. Intern Med J. 2012;42:23–9.

    Article  PubMed  CAS  Google Scholar 

  62. Thomson AH, Staatz CE, Tobin CM, Gall M, Lovering AM. Development and evaluation of vancomycin dosage guidelines designed to achieve new target concentrations. J Antimicrob Chemother. 2009;63:1050–7.

    Article  PubMed  CAS  Google Scholar 

  63. Soriano A, Marco F, Martínez JA, Pisos E, Almela M, Dimova VP, et al. Influence of vancomycin minimum inhibitory concentration on the treatment of methicillin-resistant Staphylococcus aureus bacteremia. Clin Infect Dis. 2008;46:193–200.

    Article  PubMed  CAS  Google Scholar 

  64. Takesue Y, Nakajima K, Takahashi Y, Ichiki K, Ishihara M, Wada Y, et al. Clinical characteristics of vancomycin minimum inhibitory concentration of 2 μg/ml methicillin-resistant Staphylococcus aureus strains isolated from patients with bacteremia. J Infect Chemother. 2011;17:52–7.

    Article  PubMed  CAS  Google Scholar 

  65. van Hal SJ, Lodise TP, Paterson DL. The clinical significance of vancomycin minimum inhibitory concentration in Staphylococcus aureus infections: a systematic review and meta-analysis. Clin Infect Dis. 2012;54:755–71.

    Article  PubMed  CAS  Google Scholar 

  66. Lodise TP, Graves J, Evans A, Graffunder E, Helmecke M, Lomaestro BM, et al. Relationship between vancomycin MIC and failure among patients with methicillin-resistant Staphylococcus aureus bacteremia treated with vancomycin. Antimicrob Agents Chemother. 2008;52:3315–20.

    Article  PubMed  CAS  Google Scholar 

  67. Moise PA, Sakoulas G, Forrest A, Schentag JJ. Vancomycin in vitro bactericidal activity and its relationship to efficacy in clearance of methicillin-resistant Staphylococcus aureus bacteremia. Antimicrob Agents Chemother. 2007;51:2582–6.

    Article  PubMed  CAS  Google Scholar 

  68. Wang JL, Wang JT, Sheng WH, Chen YC, Chang SC. Nosocomial methicillin-resistant Staphylococcus aureus (MRSA) bacteremia in Taiwan: mortality analyses and the impact of vancomycin, MIC = 2 mg/L, by the broth microdilution method. BMC Infect Dis. 2010;10:159.

    Article  PubMed  CAS  Google Scholar 

  69. Alós JI, García-Cañas A, García-Hierro P, Rodríguez-Salvanés F. Vancomycin MICs did not creep in Staphylococcus aureus isolates from 2002 to 2006 in a setting with low vancomycin usage. J Antimicrob Chemother. 2008;62:773–5.

    Article  PubMed  CAS  Google Scholar 

  70. Steinkraus G, White R, Friedrich L. Vancomycin MIC creep in non-vancomycin-intermediate Staphylococcus aureus (VISA), vancomycin-susceptible clinical methicillin-resistant S. aureus (MRSA) blood isolates from 2001–05. J Antimicrob Chemother. 2007;60:788–94.

    Article  PubMed  CAS  Google Scholar 

  71. Sader HS, Fey PD, Limaye AP, Madinger N, Pankey G, Rahal J, et al. Evaluation of vancomycin and daptomycin potency trends (MIC creep) against methicillin-resistant Staphylococcus aureus isolates collected in nine U.S. medical centers from 2002 to 2006. Antimicrob Agents Chemother. 2009;53:4127–32.

    Google Scholar 

  72. Sakoulas G, Moellering RC Jr. Increasing antibiotic resistance among methicillin-resistant Staphylococcus aureus strains. Clin Infect Dis. 2008;46(suppl 5):S360–7.

    Article  PubMed  CAS  Google Scholar 

  73. Hsu DI, Hidayat LK, Quist R, Hindler J, Karlsson A, Yusof A, et al. Comparison of method-specific vancomycin minimum inhibitory concentration values and their predictability for treatment outcome of meticillin-resistant Staphylococcus aureus (MRSA) infections. Int J Antimicrob Agents. 2008;32:378–85.

    Article  PubMed  CAS  Google Scholar 

  74. Prakash V, Lewis JS 2nd, Jorgensen JH. Vancomycin MICs for methicillin-resistant Staphylococcus aureus isolates differ based upon the susceptibility test method used. Antimicrob Agents Chemother. 2008;52:4528.

    Article  PubMed  CAS  Google Scholar 

  75. Sader HS, Rhomberg PR, Jones RN. Nine-hospital study comparing broth microdilution and Etest method results for vancomycin and daptomycin against methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2009;53:3162–5.

    Article  PubMed  CAS  Google Scholar 

  76. Fridkin SK, Hageman J, McDougal LK, Mohammed J, Jarvis WR, Perl TM, et al. Vancomycin-intermediate Staphylococcus aureus Epidemiology Study Group. Epidemiological and microbiological characterization of infections caused by Staphylococcus aureus with reduced susceptibility to vancomycin, United States, 1997–2001. Clin Infect Dis. 2003;36:429–39.

    Article  PubMed  Google Scholar 

  77. Tenover FC, Moellering RC Jr. The rationale for revising the Clinical and Laboratory Standards Institute vancomycin minimal inhibitory concentration interpretive criteria for Staphylococcus aureus. Clin Infect Dis. 2007;44:1208–15.

    Article  PubMed  CAS  Google Scholar 

  78. Cui L, Tominaga E, Neoh HM, Hiramatsu K. Correlation between reduced daptomycin susceptibility and vancomycin resistance in vancomycin-intermediate staphylococcus aureus. Antimicrob Agents Chemother. 2006;50:1079–82.

    Article  PubMed  CAS  Google Scholar 

  79. Kelley PG, Gao W, Ward PB, Howden BP. Daptomycin non-susceptibility in vancomycin-intermediate Staphylococcus aureus (VISA) and heterogeneous-VISA (hVISA): implications for therapy after vancomycin treatment failure. J Antimicrob Chemother. 2011;66:1057–60.

    Article  PubMed  CAS  Google Scholar 

  80. Crompton JA, North DS, Yoon M, Steenbergen JN, Lamp KC, Forrest GN. Outcomes with daptomycin in the treatment of Staphylococcus aureus infections with a range of vancomycin MICs. J Antimicrob Chemother. 2010;65:1784–91.

    Article  PubMed  CAS  Google Scholar 

  81. Moore CL, Osaki-Kiyan P, Haque NZ, Perri MB, Donabedian S, Zervos MJ. Daptomycin versus vancomycin for bloodstream infections due to methicillin-resistant Staphylococcus aureus with a high vancomycin minimum inhibitory concentration: a case-control study. Clin Infect Dis. 2012;54:51–8.

    Article  PubMed  CAS  Google Scholar 

  82. Moellering RC Jr, Krogstad DJ, Greenblatt DJ. Vancomycin therapy in patients with impaired renal function: a nomogram for dosage. Ann Intern Med. 1981;94:343–6.

    Article  PubMed  Google Scholar 

  83. Matzke GR, McGory RW, Halstenson CE, Keane WF. Pharmacokinetics of vancomycin in patients with various degrees of renal function. Antimicrob Agents Chemother. 1984;25:433–7.

    Article  PubMed  CAS  Google Scholar 

  84. Kullar R, Leonard SN, Davis SL, Delgado G Jr, Pogue JM, Wahby KA, et al. Validation of the effectiveness of a vancomycin nomogram in achieving target trough concentrations of 15–20 mg/L suggested by the vancomycin consensus guidelines. Pharmacotherapy. 2011;31:441–8.

    Article  PubMed  CAS  Google Scholar 

  85. Pollard TA, Lampasona V, Akkerman S, Tom K, Hooks MA, Mullins RE, et al. Vancomycin redistribution: dosing recommendations following high-flux hemodialysis. Kidney Int. 1994;45:232–7.

    Article  PubMed  CAS  Google Scholar 

  86. Clark WR, Leypoldt JK, Henderson LW, Mueller BA, Scott MK, Vonesh EF. Quantifying the effect of changes in the hemodialysis prescription on effective solute removal with a mathematical model. J Am Soc Nephrol. 1999;10:601–9.

    PubMed  CAS  Google Scholar 

  87. DeSoi CA, Sahm DF, Umans JG. Vancomycin elimination during high-flux hemodialysis: kinetic model and comparison of four membranes. Am J Kidney Dis. 1992;20:354–60.

    PubMed  CAS  Google Scholar 

  88. Böhler J, Reetze-Bonorden P, Keller E, Kramer A, Schollmeyer PJ. Rebound of plasma vancomycin levels after haemodialysis with highly permeable membranes. Eur J Clin Pharmacol. 1992;42:635–9.

    Article  PubMed  Google Scholar 

  89. Pollard TA, Lampasona V, Akkerman S, Tom K, Hooks MA, Mullins RE, et al. Vancomycin redistribution: dosing recommendations following high-flux hemodialysis. Kidney Int. 1994;45:232–7.

    Article  PubMed  CAS  Google Scholar 

  90. Barth RH, DeVincenzo N. Use of vancomycin in high-flux hemodialysis: experience with 130 courses of therapy. Kidney Int. 1996;50:929–36.

    Article  PubMed  CAS  Google Scholar 

  91. Brown M, Polisetty R, Gracely EJ, Cuhaci B, Schlecht HP. Weight-based loading of vancomycin in patients on hemodialysis. Clin Infect Dis. 2011;53:164–6.

    Article  PubMed  Google Scholar 

  92. Vandecasteele SJ, De Bacquer D, De Vriese AS. Implementation of a dose calculator for vancomycin to achieve target trough levels of 15–20 microg/ml in persons undergoing hemodialysis. Clin Infect Dis. 2011;53:124–9.

    Article  PubMed  CAS  Google Scholar 

  93. Crawford BS, Largen RF, Walton T, Doran JJ. Once-weekly vancomycin for patients receiving high-flux hemodialysis. Am J Health Syst Pharm. 2008;65:1248–53.

    Article  PubMed  CAS  Google Scholar 

  94. Roberts JA, Kruger P, Paterson DL, Lipman J. Antibiotic resistance–what’s dosing got to do with it? Crit Care Med. 2008;36:2433–40.

    Article  PubMed  CAS  Google Scholar 

  95. Gatward JJ, Gibbon GJ, Wrathall G, Padkin A. Renal replacement therapy for acute renal failure: a survey of practice in adult intensive care units in the United Kingdom. Anaesthesia. 2008;63:959–66.

    Article  PubMed  CAS  Google Scholar 

  96. RENAL Study Investigators. Renal replacement therapy for acute kidney injury in Australian and New Zealand intensive care units: a practice survey. Crit Care Resusc. 2008;10:225–30.

    Google Scholar 

  97. Trotman RL, Williamson JC, Shoemaker DM, Salzer WL. Antibiotic dosing in critically ill adult patients receiving continuous renal replacement therapy. Clin Infect Dis. 2005;41:1159–66.

    Article  PubMed  CAS  Google Scholar 

  98. Joy MS, Matzke GR, Frye RF, Palevsky PM. Determinants of vancomycin clearance by continuous venovenous hemofiltration and continuous venovenous hemodialysis. Am J Kidney Dis. 1998;31:1019–27.

    Article  PubMed  CAS  Google Scholar 

  99. Chaijamorn W, Jitsurong A, Wiwattanawongsa K, Wanakamanee U, Dandecha P. Vancomycin clearance during continuous venovenous haemofiltration in critically ill patients. Int J Antimicrob Agents. 2011;38:152–6.

    Article  PubMed  CAS  Google Scholar 

  100. DelDot ME, Lipman J, Tett SE. Vancomycin pharmacokinetics in critically ill patients receiving continuous venovenous haemodiafiltration. Br J Clin Pharmacol. 2004;58:259–68.

    Article  PubMed  CAS  Google Scholar 

  101. Yamamoto T, Yasuno N, Katada S, Hisaka A, Hanafusa N, Noiri E, et al. Proposal of a pharmacokinetically optimized dosage regimen of antibiotics in patients receiving continuous hemodiafiltration. Antimicrob Agents Chemother. 2011;55:5804–12.

    Article  PubMed  CAS  Google Scholar 

  102. Hirasawa H, Oda S, Nakamura M, Watanabe E, Shiga H, Matsuda K. Continuous hemodiafiltration with a cytokine-adsorbing hemofilter for sepsis. Blood Purif. 2012;34:164–70.

    Article  PubMed  CAS  Google Scholar 

  103. Morse GD, Farolino DF, Apicella MA, Walshe JJ. Comparative study of intraperitoneal and intravenous vancomycin pharmacokinetics during continuous ambulatory peritoneal dialysis. Antimicrob Agents Chemother. 1987;31:173–7.

    Article  PubMed  CAS  Google Scholar 

  104. Wiggins KJ, Craig JC, Johnson DW, Strippoli GFM. Treatment for peritoneal dialysis-associated peritonitis. London: The Cochrane Library; 2010.

    Google Scholar 

  105. Montañés Pauls B, Almiñana MA, Casabó Alós VG. Vancomycin pharmacokinetics during continuous ambulatory peritoneal dialysis in patients with peritonitis. Eur J Pharm Sci. 2011;43:212–6.

  106. Li PK, Szeto CC, Piraino B, Bernardini J, Figueiredo AE, Gupta A, et al. Peritoneal dialysis-related infections recommendations: 2010 update. Perit Dial Int. 2010;30:393–423.

    Article  PubMed  Google Scholar 

  107. Bunke CM, Aronoff GR, Brier ME, Sloan RS, Luft FC. Vancomycin kinetics during continuous ambulatory peritoneal dialysis. Clin Pharmacol Ther. 1983;34:631–7.

    Article  PubMed  CAS  Google Scholar 

  108. Manley HJ, Bailie GR, Frye RF, McGoldrick MD. Intravenous vancomycin pharmacokinetics in automated peritoneal dialysis patients. Perit Dial Int. 2001;21:378–85.

    PubMed  CAS  Google Scholar 

  109. Broome L, So TY. An evaluation of initial vancomycin dosing in infants, children, and adolescents. Int J Pediatr. 2011 (Epub ahead of print).

  110. Kim DI, Im MS, Choi JH, Lee J, Choi EH, Lee HJ. Therapeutic monitoring of vancomycin according to initial dosing regimen in pediatric patients. Korean J Pediatr. 2010;53:1000–5.

    Article  PubMed  CAS  Google Scholar 

  111. Eiland LS, English TM, Eiland EH 3rd. Assessment of vancomycin dosing and subsequent serum concentrations in pediatric patients. Ann Pharmacother. 2011;45:582–9.

    Article  PubMed  CAS  Google Scholar 

  112. Frymoyer A, Hersh AL, Benet LZ, Guglielmo BJ. Current recommended dosing of vancomycin for children with invasive methicillin-resistant Staphylococcus aureus infections is inadequate. Pediatr Infect Dis J. 2009;28:398–402.

    Article  PubMed  Google Scholar 

  113. Glover ML, Cole E, Wolfsdorf J. Vancomycin dosage requirements among pediatric intensive care unit patients with normal renal function. J Crit Care. 2000;15:1–4.

    Article  PubMed  CAS  Google Scholar 

  114. McCabe T, Davis G, Iocono J, Nelson C, Kuhn R. Evaluating the empiric dose of vancomycin in pediatric patients (abstract). J Pediatr Pharmacol Ther. 2009;14:168.

    Google Scholar 

  115. Gordon CL, Thompson C, Carapetis JR, Turnidge J, Kilburn C, Currie BJ. Trough concentrations of vancomycin: adult therapeutic targets are not appropriate for children. Pediatr Infect Dis J. 2012;31:1269–71.

    Article  PubMed  Google Scholar 

  116. Frymoyer A, Guglielmo BJ, Wilson SD, Scarpace SB, Benet LZ, Hersh AL. Impact of a hospitalwide increase in empiric pediatric vancomycin dosing on initial trough concentrations. Pharmacotherapy. 2011;31:871–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

Yoshio Takesue has received a speaker’s honorarium from Pfizer Japan Inc., Astellas Pharma, Shionogi & Co., Ltd., MSD KK, Taisho Toyama Pharmaceutical Co., Ltd., and Dainippon Sumitomo Pharma. Yoshio Takesue has received Grant support from Pfizer Japan Inc., Astellas Pharma, Shionogi & Co., Ltd., MSD KK, Taisho Toyama Pharmaceutical Co., Ltd., Takeda Pharmaceutical Company Limited, and Dainippon Sumitomo Pharma. Norio Ohmagari has received speaker’s honorarium from Pfizer Japan Inc., Shionogi & Co., Ltd., Taisho Toyama Pharmaceutical Co., Ltd. Masafumi Seki has received a speaker’s honorarium from Pham. Corporations as follows: Astellas Inc., MSD Inc., Pfizer Japan Inc., Shionogi Inc., and Taisho Toyama Inc. Shunji Takakura has received speaker’s honorarium from Pfizer Japan Inc., Astellas Pharma Inc. Yusuke Tanigawara is a consultant to Meiji Seika Pharma Co., Ltd. Toshimi Kimura has received a speaker’s honorarium from Meiji Seika Pharma.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshio Takesue.

About this article

Cite this article

Matsumoto, K., Takesue, Y., Ohmagari, N. et al. Practice guidelines for therapeutic drug monitoring of vancomycin: a consensus review of the Japanese Society of Chemotherapy and the Japanese Society of Therapeutic Drug Monitoring. J Infect Chemother 19, 365–380 (2013). https://doi.org/10.1007/s10156-013-0599-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10156-013-0599-4

Keywords

Navigation