Skip to main content
Log in

The use of the microplate alamar blue assay (MABA) to assess the susceptibility of Mycobacterium lepraemurium to anti-leprosy and other drugs

  • Original Article
  • Published:
Journal of Infection and Chemotherapy

Abstract

Although murine leprosy is no longer a common illness, our understanding of the biology of this disease is incomplete. One particular example of this concerns the etiologic agent Mycobacterium lepraemurium (MLM). MLM is a fastidious microorganism that is difficult to grow in axenic media; in a way, this has hampered attempts to thoroughly study its physiological and metabolic characteristics. MLM is an obligate intracellular bacillus that invades macrophages and replicates profusely with a generation time that oscillates between 0.5 and 11 days. In the present study, we have successfully maintained MLM alive for more than 12 days in vitro, providing us with an opportunity to study its susceptibility to several anti-leprosy agents and other drugs. To achieve this, we used a fluorescence reduction assay of alamar blue (a resazurin) in a microplate format (microplate-alamar-blue-assay; MABA), which is a highly sensitive, practical, and inexpensive method for assaying cell viability. We found that MLM was highly susceptible to clofazimine and rifampicin and was less susceptible to streptomycin, thiacetazone, kanamycin, dapsone, and ethionamide, in that order. MLM was not susceptible to four plant triterpenoids (oleanolic acid, neolignan-c, sitosterol, and ursolic acid) for which bactericidal activity has been reported in M. tuberculosis. Because the MABA has high sensitivity, it can be used to monitor the activity of microorganisms that are difficult to cultivate (such as M. lepraemurium), in response to various drugs, thus offering a method to complement the study of murine leprosy, about which many questions remain unanswered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rojas-Espinosa O. Murine leprosy revisited. In: Tomioka H, editor. Current topics on the profiles of host immunological response to mycobacterial infections. Special Immunology Review Book. Trivandrum, India: Research Signpost; 2009. p. 97–140. ISBN:978-81-308-0362-3.

  2. Rojas-Espinosa O, Lovik M. Mycobacterial infections in domestic and wild animals: Mycobacterium leprae and Mycobacterium lepraemurium. Rev Sci Tech. 2001;20:219–51.

    PubMed  CAS  Google Scholar 

  3. Ha DK, Lawton JW, Collins RJ. A histopathological study of pulmonary infection of mice with Mycobacterium lepraemurium. J Comp Pathol. 1988;99:421–9.

    Article  PubMed  CAS  Google Scholar 

  4. Krakower C, Gonzalez LM. Spontaneous leprosy in a mouse. Science. 1937;86:617–8.

    Article  PubMed  CAS  Google Scholar 

  5. Vaishnavi C, Ganguly NK, Kumar B, Chakravarti R, Kaur S. Histopathological study of skin, nose, ear and tail in experimental leprosy. Jpn J Exp Med. 1989;59:79–84.

    PubMed  CAS  Google Scholar 

  6. Rojas-Espinosa O, Oltra A, Arce P, Mendez P, Gonzalez-Mendoza A. Glomerular immunoglobulin deposition in the absence of tissue damage in murine leprosy. Int J Lepr Other Mycobact Dis. 1989;57:879–82.

    PubMed  CAS  Google Scholar 

  7. Rojas-Espinosa O, Reyes-Maldonado E. Renal alterations in murine leprosy. Int J Lepr Other Mycobact Dis. 1991;59:652–5.

    PubMed  CAS  Google Scholar 

  8. Rojas Espinosa O, Becerril-Villanueva E, Wek-Rodríguez K, Arce-Paredes P, Reyes-Maldonado E. Palsy of the rear limbs in Mycobacterium lepraemurium-infected mice results from bone damage and not from nerve involvement. Clin Exp Immunol. 2005;140:436–42.

    Google Scholar 

  9. Kawaguchi Y. Classification of mouse leprosy. Jpn J Exp Med. 1959;29:651–63.

    PubMed  CAS  Google Scholar 

  10. Roggero E, Bottasso O, Morini J. Characterization of experimental infection with Mycobacterium lepraemurium in 2 strains of mice. Rev Argent Microbiol. 1988;20:26–35.

    PubMed  CAS  Google Scholar 

  11. Closs O. Experimental murine leprosy: growth of Mycobacterium lepraemurium in C3H and C57BL mice after footpad inoculation. Infect Immun. 1975;12:480–9.

    PubMed  CAS  Google Scholar 

  12. Closs O, Haugen OA. Experimental murine leprosy. 4. The gross appearance and microscopic features of the local infiltrate after subcutaneous inoculation of C3H and C57/BL mice with Mycobacterium lepraemurium. Acta Pathol Microbiol Scand (A). 1975;83:59–68.

    Google Scholar 

  13. Lovik M, Closs O. Local reactivity, local resistance and systemic dissemination in Mycobacterium lepraemurium (MLM) infection. Clin Exp Immunol. 1989;75:461–5.

    PubMed  CAS  Google Scholar 

  14. Silbaq F, Mor N, Levy L, Bercovier H. The disease of CBA and Balb/c mice that follows inoculation of a small number of Mycobacterium lepraemurium into the hind footpad. Int J Lepr Other Mycobact Dis. 1990;58:681–9.

    PubMed  CAS  Google Scholar 

  15. Silbaq F, Levy L, Bercovier H. Doubling time of Mycobacterium lepraemurium in mouse footpads. Res Microbiol. 1989;140:43–50.

    Article  PubMed  CAS  Google Scholar 

  16. Azuma I, Yamamura Y, Tanaka Y, Kosaka K, Mori T. Cell wall of Mycobacterium lepraemurium strain Hawaii. J Bacteriol. 1973;113:515–8.

    PubMed  CAS  Google Scholar 

  17. Prabhakaran K, Harris EB, Kirchheimer WF. Binding of 14C-labeled DOPA by Mycobacterium leprae in vitro. Int J Lepr Other Mycobact Dis. 1976;44:58–64.

    PubMed  CAS  Google Scholar 

  18. Draper P (1980) Report of the fifth meeting of the Scientific Working Group on the Immunology of Leprosy, Geneva, 24–26 June, 1980, TDR/IMMLEP-SGW 5/80.3.

  19. Jarnagin JL, Luchsinger DW. The use of fluorescein diacetate and ethidium bromide as a stain for evaluating viability of mycobacteria. Stain Technol. 1980;55:253–8.

    PubMed  CAS  Google Scholar 

  20. Jimenez A, Meckes M, Alvarez V, Torres J, Parra R. Secondary metabolites from Chamaedora tepejilote (Palmae) are active against Mycobacterium tuberculosis. Phytother Res. 2005;19:320–2.

    Article  PubMed  CAS  Google Scholar 

  21. Jiménez-Arellanes A, Meckes M, Torres J, Luna J. Antimycobacterial triterpenoids from Lantana hispida (Verbenaceae). J Ethnopharmacol. 2007;111:202–5.

    Article  PubMed  Google Scholar 

  22. Silva-Miranda M, Wek-Rodriguez K, Martinez-Cordero E, Rojas-Espinosa O. Expression of cyclooxygenase-2, alpha 1-acid-glycoprotein and inducible nitric oxide synthase in the developing lesions of murine leprosy. Int J Exp Pathol. 2006;87:485–94.

    Article  PubMed  Google Scholar 

  23. Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957;26:497–509.

    Google Scholar 

  24. Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265–70.

    PubMed  CAS  Google Scholar 

  25. Palomino JC, Martin A, Camacho M, Guerra H, Swings J, Portaels F. Resazurin microtiter assay plate: simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2002;46:2720–2.

    Article  PubMed  CAS  Google Scholar 

  26. Franzblau SG, Witzig RS, McLaughlin JC, Torres P, Madico G, Hernandez A, et al. Rapid, low-technology MIC determination with clinical Mycobacterium tuberculosis isolates by using the microplate alamar blue assay. J Clin Microbiol. 1998;36:362–6.

    PubMed  CAS  Google Scholar 

  27. Vanitha JD, Paramasivan CN. Evaluation of microplate alamar blue assay for drug susceptibility testing of Mycobacterium avium complex isolates. Diagn Microbiol Infect Dis. 2004;49:179–82.

    Article  PubMed  CAS  Google Scholar 

  28. Webster D, Lee TDG, Moore J, Manning T, Kunimoto D, LeBlanc D, et al. Antimycobacterial screening of traditional medicinal plants using the microplate resazurin assay. Can J Microbiol. 2010;56:487–94.

    Article  PubMed  CAS  Google Scholar 

  29. Collins L, Franzblau SG. Microplate alamar blue assay versus BACTEC 460 system for high-throughput screening of compounds against Mycobacterium tuberculosis and Mycobacterium avium. Antimicrob Agents Chemother. 1997;41:1004–9.

    PubMed  CAS  Google Scholar 

  30. Bastian I, Rigouts L, Palomino JC, Portaels F. Kanamycin susceptibility testing of Mycobacterium tuberculosis using mycobacterium growth indicator tube and colorimetric method. Antimicrob Agents Chemother. 2001;45:1934–6.

    Article  PubMed  CAS  Google Scholar 

  31. Martin A, Camacho M, Portaels F, Palomino JC. Resazurin microtiter assay plate testing of Mycobacterium tuberculosis susceptibilities to second-line drugs: rapid, simple, and inexpensive method. Antimicrob Agents Chemother. 2003;47:3616–9.

    Article  PubMed  CAS  Google Scholar 

  32. Reis RS, Neves I Jr, Lourenco SL, Fonseca LS, Lourenco MC. Comparison of flow cytometric and Alamar Blue tests with the proportional method for testing susceptibility of Mycobacterium tuberculosis to rifampin and isoniazid. J Clin Microbiol. 2004;42:2247–8.

    Article  PubMed  CAS  Google Scholar 

  33. Franzblau S. A rapid, microplate-based assay for evaluating the activity of drugs against Mycobacterium leprae, employing the reduction of alamar blue. Lepr Rev. 2000;71(Suppl):S74–6.

    PubMed  Google Scholar 

  34. Pogorelov VN. Effectiveness of kanamycin in rat leprosy. Antibiotiki. 1964;45:1096–8.

    PubMed  CAS  Google Scholar 

  35. Mauri AC, Hadler WA, Carvalho CM. Chemotherapy of leprosy. 1. Effect of 4,4-diaminodiphenylsulfone in rat leprosy. Rev Bras Leprol. 1951;19:85–116.

    PubMed  CAS  Google Scholar 

  36. Cruickshank JC. Isoniazid in the treatment of rat leprosy. Lancet. 1954;267:528–9.

    Article  PubMed  CAS  Google Scholar 

  37. Mudrow-Reichenow L. Rat leprosy in therapeutic testing. Z Tropenmed Parasitol. 1955;6:460–72.

    PubMed  CAS  Google Scholar 

  38. Fegeler F. The favourable effect of kanamycin in experimental rat leprosy. Z Tropenmed Parasitol. 1959;10:447–9.

    PubMed  CAS  Google Scholar 

  39. Camargo EE, Larson SM, Tepper BS, Wagner HN Jr. A radiometric method for predicting effectiveness of chemotherapeutic agents in murine leprosy. Int J Lepr Other Mycobact Dis. 1975;43:234–8.

    PubMed  CAS  Google Scholar 

  40. Portaels F, Pattyn SR, Francken A. In vitro sensitivity of Mycobacterium lepraemurium for antimycobacterial drugs. Arzneimittelforschung. 1982;32:1123–4.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Mónica Vargas-Lascari (ENCB/IPN) for providing the mice used in this study. Partial financial support came from Secretaría de Investigación y Posgrado (SIP 20100533 and SIP 20110401), IPN, México, Sistema Nacional de Investigadores (SNI, CONACYT, México), and Comisión de Operación y Fomento de las Actividades Académicas (COFAA, IPN, México).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Rojas-Espinosa.

About this article

Cite this article

Mendoza-Aguilar, M., Almaguer-Villagrán, L., Jiménez-Arellanes, A. et al. The use of the microplate alamar blue assay (MABA) to assess the susceptibility of Mycobacterium lepraemurium to anti-leprosy and other drugs. J Infect Chemother 18, 652–661 (2012). https://doi.org/10.1007/s10156-012-0387-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10156-012-0387-6

Keywords

Navigation