Skip to main content
Log in

Relationship between the expression of ompF and quinolone resistance in Escherichia coli

  • Original Article
  • Published:
Journal of Infection and Chemotherapy

Abstract

The outer membrane porin protein, OmpF, is widely found in gram-negative bacteria. It is known that the decreased expression of OmpF causes resistance to multiple antibiotics, including quinolones. In order to characterize the influence of decreased OmpF expression on bacterial growth, the fitness of the ompF and gyrA mutant strain of Escherichia coli selected experimentally with quinolone was compared with that of the parent strain. The expression levels of ompF in clinical isolates and the mutant selected with quinolone were determined by real-time PCR. The bacterial growth of the experimentally selected mutants was also measured both in vitro and in a urinary tract infection model in mice. Decreased ompF phenotypes were frequently found in clinical isolates that exhibited alteration of topoisomerases. The mutant experimentally obtained by the resistance selection process with quinolone showed no loss of fitness either in vitro or in vivo. These results suggest that the decreased expression of ompF and gyrA mutation do not affect the survival of the bacteria, and in fact may be responsible for the spread of high-level resistance to quinolones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Egger LA, Park H, Inouye M. Signal transduction via the histidylaspartyl phosphorelay. Genes Cells 1997;2:167–184.

    Article  CAS  PubMed  Google Scholar 

  2. Mizuno T, Chou MY, Inouye M. A unique mechanism regulating gene expression: translational inhibition by a complementary RNA transcript (micRNA). Proc Natl Acad Sci U S A 1984;81:1966–1970.

    Article  CAS  PubMed  Google Scholar 

  3. Chen S, Zhang A, Blyn LB, Storz G. MicC, a second small-RNA regulator of Omp protein expression in Escherichia coli. J Bacteriol 2004;186:6689–6697.

    Article  CAS  PubMed  Google Scholar 

  4. Cohen SP, McMurry LM, Hooper DC, Wolfson JS, Levy SB. Cross-resistance to fluoroquinolones in multiple-antibiotic-resistant (Mar) Escherichia coli selected by tetracycline or chloramphenicol: decreased drug accumulation associated with membrane changes in addition to OmpF reduction. Antimicrob Agents Chemother 1989;33:1318–1325.

    CAS  PubMed  Google Scholar 

  5. Miller, K, O’Neill AJ, Chopra I. Escherichia coli mutators present an enhanced risk for emergence of antibiotic resistance during urinary tract infections. Antimicrob Agents Chemother 2004;48:23–29.

    Article  CAS  PubMed  Google Scholar 

  6. Tavio MM, Vila J, Ruiz J, Martin-Sanchez AM, Jimenez de Anta MT. Mechanisms involved in the development of resistance to fluoroquinolones in Escherichia coli isolates. J Antimicrob Chemother 1999;44:735–742.

    Article  CAS  PubMed  Google Scholar 

  7. Neves P, Berkane E, Gameiro P, Winterhalter M, de Castro B. Interaction between quinolone antibiotics and bacterial outer membrane porin OmpF. Biophys Chem. 2005;113:123–128.

    Article  CAS  PubMed  Google Scholar 

  8. Chenia HY, Pillay B, Pillay D. Analysis of the mechanisms of fluoroquinolone resistance in urinary tract pathogens. J Antimicrob Chemother 2006;58:1274–1278. Epub 2006 Oct 13.

    Article  CAS  PubMed  Google Scholar 

  9. Yoshida H, Bogaki M, Nakamura M, Nakamura S. Quinolone resistance-determining region in the DNA gyrase gyrA gene of Escherichia coli. Antimicrob Agents Chemother 1990;34:1271–1272.

    CAS  PubMed  Google Scholar 

  10. Ferrero L, Cameron B, Manse B, et al. Cloning and primary structure of Staphylococcus aureus DNA topoisomerase IV: a primary target of fluoroquinolones. Mol Microbiol 1994;13:641–653.

    Article  CAS  PubMed  Google Scholar 

  11. Leying HJ, Buscher KH, Cullmann W, Then RL. Lipopolysaccharide alterations responsible for combined quinolone and betalactam resistance in Pseudomonas aeruginosa. Chemotherapy 1992;38:82–91.

    Article  CAS  PubMed  Google Scholar 

  12. Hooper DC, Wolfson JS, Souza KS, Tung C, McHugh GL, Swartz MN. Genetic and biochemical characterization of norfloxacin resistance in Escherichia coli. Antimicrob Agents Chemother 1986;29:639–644.

    CAS  PubMed  Google Scholar 

  13. Tran JH, Jacoby GA. Mechanism of plasmid-mediated quinolone resistance. Proc Natl Acad Sci U S A 2002;99:5638–5642. Epub 2002 Apr 9.

    Article  CAS  PubMed  Google Scholar 

  14. Robicsek A, Strahilevitz J, Jacoby GA, et al. Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Nat Med 2006;12:83–88. Epub 2005 Dec 20.

    Article  CAS  PubMed  Google Scholar 

  15. Perichon B, Courvalin P, Galimand M. Transferable resistance to aminoglycosides by methylation of G1405 in 16S rRNA and to hydrophilic fluoroquinolones by QepA-mediated efflux in Escherichia coli. Antimicrob Agents Chemother 2007;51:2464–2469. Epub 2007 Apr 30.

    Article  CAS  PubMed  Google Scholar 

  16. Hirai K, Aoyama H, Suzue S, Irikura T, Iyobe S, Mitsuhashi S. Isolation and characterization of norfloxacin-resistant mutants of Escherichia coli K-12. Antimicrob Agents Chemother. 1986;30:248–253.

    CAS  PubMed  Google Scholar 

  17. Cohen SP, McMurry LM, Levy SB. marA locus causes decreased expression of OmpF porin in multiple-antibiotic-resistant (Mar) mutants of Escherichia coli. J Bacteriol 1988;170:5416–422.

    CAS  PubMed  Google Scholar 

  18. Hirai K, Aoyama H, Hosaka M, et al. In vitro and in vivo antibacterial activity of AM-833, a new quinolone derivative. Antimicrob Agents Chemother 1986;29:1059–1066.

    CAS  PubMed  Google Scholar 

  19. Ince D, Hooper DC. Quinolone resistance due to reduced target enzyme expression. J Bacteriol 2003;185:6883–6892.

    Article  CAS  PubMed  Google Scholar 

  20. Kugelberg E, Lofmark S, Wretlind B, Andersson DI. Reduction of the fitness burden of quinolone resistance in Pseudomonas aeruginosa. J Antimicrob Chemother 2005;55:22–30. Epub 2004 Dec 1.

    Article  CAS  PubMed  Google Scholar 

  21. Gillespie SH, Voelker LL, Dickens A. Evolutionary barriers to quinolone resistance in Streptococcus pneumoniae. Microb Drug Resist 2002;8:79–84.

    Article  CAS  PubMed  Google Scholar 

  22. Giraud E, Cloeckaert A, Baucheron S, Mouline C, Chaslus-Dancla E. Fitness cost of fluoroquinolone resistance in Salmonella enterica serovar Typhimurium. J Med Microbiol 2003;52:697–703.

    Article  PubMed  Google Scholar 

  23. Komp Lindgren P, Marcusson LL, Sandvang D, Frimodt-Moller N, Hughes D. Biological cost of single and multiple norfloxacin resistance mutations in Escherichia coli implicated in urinary tract infections. Antimicrob Agents Chemother 2005;49:2343–2351.

    Article  PubMed  Google Scholar 

  24. Rozen DE, McGee L, Levin BR, Klugman KP. Fitness costs of fluoroquinolone resistance in Streptococcus pneumoniae. Antimicrob Agents Chemother 2007;51:412–416. Epub 2006 Nov 20.

    Article  CAS  PubMed  Google Scholar 

  25. Randall LP, Woodward MJ. The multiple antibiotic resistance (mar) locus and its significance. Res Vet Sci 2002;72:87–93.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryuta Kishii.

About this article

Cite this article

Kishii, R., Takei, M. Relationship between the expression of ompF and quinolone resistance in Escherichia coli . J Infect Chemother 15, 361–366 (2009). https://doi.org/10.1007/s10156-009-0716-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10156-009-0716-6

Key words

Navigation