Skip to main content

Advertisement

Log in

The roles of prostanoids in infection and sickness behaviors

  • Review Article
  • Published:
Journal of Infection and Chemotherapy

Abstract

A systemic infection in patients causes so-called sickness behaviors, such as fever generation, adrenocorticotropic hormone release, reduced locomotion, loss of social contact, anorexia, and increased sleep. As aspirin-like non-steroidal anti-inflammatory drugs alleviate most of these symptoms, the involvement of prostanoids in the generation of sickness behaviors has been strongly suggested. Prostanoids, consisting of prostaglandins (PGs) and thromboxanes (TXs), are a group of lipid mediators formed in response to various stimuli. They include PGD2, PGE2, PGF2α, PGI2, and TXA2. Immediately after synthesis, they are released outside the cells, and exert their actions by binding to a G-protein-coupled rhodopsin-type receptor on the surface of target cells. There are eight types of prostanoid receptors: the PGD receptor, four subtypes of PGE receptor, the PGF receptor, the PGI receptor, and the TXA receptor. Recently, mice deficient in each of these prostanoid receptors were generated and the examination of these mice in various experimental disease models revealed the important roles of prostaglandin receptor signaling in various pathological processes. In this review, we describe several recent findings that have addressed the mechanisms underlying sickness behaviors and that have identified the critical roles of the signaling of each prostanoid receptor in the elicitation of the stress responses associated with these sickness behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kent S, Bluthe RM, Kelley KW, Dantzer R. Sickness behavior as a new target for drug development. Trends Pharmacol Sci 1992;13:24–28.

    Article  PubMed  CAS  Google Scholar 

  2. Rothwell NJ, Hopkins SJ. Cytokines and the nervous system. II: actions and mechanisms of action. Trends Neurosci 1995;18:130–136.

    Article  PubMed  CAS  Google Scholar 

  3. Elmquist JK, Scammell TE, Saper CB. Mechanisms of CNS response to systemic immune challenge: the febrile response. Trends Neurosci 1997;20:565–570.

    Article  PubMed  CAS  Google Scholar 

  4. Ericsson A, Arias C, Sawchenko PE. Evidence for an intramedullary prostaglandin-dependent mechanism in the activation of stress-related neuroendocrine circuitry by intravenous interleukin-1. J Neurosci 1997;17:7166–7179.

    PubMed  CAS  Google Scholar 

  5. Vane JR, Bakhle YS, Botting RM. Cyclooxygenases 1 and 2. Annu Rev Pharmacol Toxicol 1998;38:97–120.

    Article  PubMed  CAS  Google Scholar 

  6. Narumiya S, Sugimoto Y, Ushikubi F. Prostanoid receptors: structures, properties, and functions. Physiol Rev 1999;79:1193–1226.

    PubMed  CAS  Google Scholar 

  7. Smith WL, DeWitt DL, Garavito RM. Cyclooxygenases: structural, cellular, and molecular biology. Annu Rev Biochem 2000;69:145–182.

    Article  PubMed  CAS  Google Scholar 

  8. Dubois RN, Abramson SB, Crofford L, Gupta RA, Simon LS, Van De Putte LB, et al. Cyclooxygenase in biology and disease. FASEB J 1998;12:1063–1073.

    PubMed  CAS  Google Scholar 

  9. Smith WL, Langenbach R. Why there are two cyclooxygenase isozymes. J Clin Invest 2001;107:1491–1495.

    Article  PubMed  CAS  Google Scholar 

  10. FitzGerald GA, Patrono C. The coxibs, selective inhibitors of cyclooxygenase-2. N Engl J Med 2001;345:433–442.

    Article  PubMed  CAS  Google Scholar 

  11. Couzin J. Drug safety. FDA panel urges caution on many antiinflammatory drugs. Science 2005;307:1183–1185.

    Article  PubMed  CAS  Google Scholar 

  12. Urade Y, Hayaishi O. Biochemical, structural, genetic, physiological, and pathophysiological features of lipocalin-type prostaglandin D synthase. Biochim Biophys Acta 2000;1482:259–271.

    PubMed  CAS  Google Scholar 

  13. Jakobsson PJ, Thoren S, Morgenstern R, Samuelsson B. Identification of human prostaglandin E synthase: a microsomal, glutathione-dependent, inducible enzyme, constituting a potential novel drug target. Proc Natl Acad Sci U S A 1999;96:7220–7225.

    Article  PubMed  CAS  Google Scholar 

  14. Murakami M, Naraba H, Tanioka T, Semmyo N, Nakatani Y, Kojima F, et al. Regulation of prostaglandin E2 biosynthesis by inducible membrane-associated prostaglandin E2 synthase that acts in concert with cyclooxygenase-2. J Biol Chem 2000;275:32783–32792.

    Article  PubMed  CAS  Google Scholar 

  15. Tanioka T, Nakatani Y, Semmyo N, Murakami M, Kudo I. Molecular identification of cytosolic prostaglandin E2 synthase that is functionally coupled with cyclooxygenase-1 in immediate prostaglandin E2 biosynthesis. J Biol Chem 2000;275:32775–327782.

    Article  PubMed  CAS  Google Scholar 

  16. Suzuki T, Fujii Y, Miyano M, Chen LY, Takahashi T, Watanabe K. cDNA cloning, expression, and mutagenesis study of liver-type prostaglandin F synthase. J Biol Chem 1999;274:241–248.

    Article  PubMed  CAS  Google Scholar 

  17. Tanabe T, Ullrich V. Prostacyclin and thromboxane synthases. J Lipid Mediat Cell Signal 1995;12:243–255.

    Article  PubMed  CAS  Google Scholar 

  18. Hirai H, Tanaka K, Yoshie O, Ogawa K, Kenmotsu K, Takamori Y, et al. Prostaglandin D2 selectively induces chemotaxis in T helper type 2 cells, eosinophils, and basophils via seven-transmembrane receptor CRTH2. J Exp Med 2001;193:255–261.

    Article  PubMed  CAS  Google Scholar 

  19. Kluger MJ. Fever: role of pyrogens and cryogens. Physiol Rev 1991;71:93–127.

    PubMed  CAS  Google Scholar 

  20. Sehic E, Szekely M, Ungar AL, Oladehin A, Blatteis CM. Hypothalamic prostaglandin E2 during lipopolysaccharide-induced fever in guinea pigs. Brain Res Bull 1996;39:391–399.

    Article  PubMed  CAS  Google Scholar 

  21. Bochenek G, Nagraba K, Gielicz A, Szczeklik A. Prostaglandin D2:biosynthesis, biological properties and participation in bronchial asthma (in Polish). Pol Arch Med Wewn 2001;106:601–609.

    PubMed  CAS  Google Scholar 

  22. Elmquist JK, Breder CD, Sherin JE, Scammell TE, Hickey WF, Dewitt D, et al. Intravenous lipopolysaccharide induces cyclooxygenase 2-like immunoreactivity in rat brain perivascular microglia and meningeal macrophages. J Comp Neurol 1997;381:119–129.

    Article  PubMed  CAS  Google Scholar 

  23. Schiltz JC, Sawchenko PE. Distinct brain vascular cell types manifest inducible cyclooxygenase expression as a function of the strength and nature of immune insults. J Neurosci 2002;22:5606–5618.

    PubMed  CAS  Google Scholar 

  24. Yamagata K, Matsumura K, Inoue W, Shiraki T, Suzuki K, Yasuda S, et al. Coexpression of microsomal-type prostaglandin E synthase with cyclooxygenase-2 in brain endothelial cells of rats during endotoxin-induced fever. J Neurosci 2001;21:2669–2677.

    PubMed  CAS  Google Scholar 

  25. Li S, Wang Y, Matsumura K, Ballou LR, Morham SG, Blatteis CM. The febrile response to lipopolysaccharide is blocked in cyclooxygenase-2(-/-), but not in cyclooxygenase-1(-/-) mice. Brain Res 1999;825:86–94.

    Article  PubMed  CAS  Google Scholar 

  26. Engblom D, Saha S, Engstrom L, Westman M, Audoly LP, Jakobsson PJ, et al. Microsomal prostaglandin E synthase-1 is the central switch during immune-induced pyresis. Nat Neurosci 2003;6:1137–1138.

    Article  PubMed  CAS  Google Scholar 

  27. Scammell TE, Elmquist JK, Griffin JD, Saper CB. Ventromedial preoptic prostaglandin E2 activates fever-producing autonomic pathways. J Neurosci 1996;16:6246–6254.

    PubMed  CAS  Google Scholar 

  28. Oka T, Oka K, Kobayashi T, Sugimoto Y, Ichikawa A, Ushikubi F, et al. Characteristics of thermoregulatory and febrile responses in mice deficient in prostaglandin EP1 and EP3 receptors. J Physiol 2003;551:945–954.

    Article  PubMed  CAS  Google Scholar 

  29. Ushikubi F, Segi E, Sugimoto Y, Murata T, Matsuoka T, Kobayashi T, et al. Impaired febrile response in mice lacking the prostaglandin E receptor subtype EP3. Nature 1998;395:281–284.

    Article  PubMed  CAS  Google Scholar 

  30. Lazarus M, Yoshida K, Coppari R, Bass CE, Mochizuki T, Lowell BB, et al. EP3 prostaglandin receptors in the median preoptic nucleus are critical for fever responses. Nat Neurosci 2007;10:1131–1133.

    Article  PubMed  CAS  Google Scholar 

  31. Tsuchiya H, Oka T, Nakamura K, Ichikawa A, Saper CB, Sugimoto Y. Prostaglandin E2 attenuates preoptic expression of GABAA receptors via EP3 receptors. J Biol Chem 2008;283:11064–11071.

    Article  PubMed  CAS  Google Scholar 

  32. Takayama K, Yuhki K, Ono K, Fujino T, Hara A, Yamada T, et al. Thromboxane A2 and prostaglandin F2alpha mediate inflammatory tachycardia. Nat Med 2005;11:562–566.

    Article  PubMed  CAS  Google Scholar 

  33. Turnbull AV, Rivier CL. Regulation of the hypothalamicpituitary-adrenal axis by cytokines: actions and mechanisms of action. Physiol Rev 1999;79:1–71.

    PubMed  CAS  Google Scholar 

  34. Kopin IJ. Definitions of stress and sympathetic neuronal responses. Ann N Y Acad Sci 1995;771:19–30.

    Article  PubMed  CAS  Google Scholar 

  35. Johnson EO, Kamilaris TC, Chrousos GP, Gold PW. Mechanisms of stress: a dynamic overview of hormonal and behavioral homeostasis. Neurosci Biobehav Rev 1992;16:115–130.

    Article  PubMed  CAS  Google Scholar 

  36. Matsuoka Y, Furuyashiki T, Bito H, Ushikubi F, Tanaka Y, Kobayashi T, et al. Impaired adrenocorticotropic hormone response to bacterial endotoxin in mice deficient in prostaglandin E receptor EP1 and EP3 subtypes. Proc Natl Acad Sci U S A 2003;100:4132–4137.

    Article  PubMed  CAS  Google Scholar 

  37. Chrousos GP, Gold PW. The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. JAMA 1992;267:1244–1252.

    Article  PubMed  CAS  Google Scholar 

  38. Matsuoka Y, Furuyashiki T, Yamada K, Nagai T, Bito H, Tanaka Y, et al. Prostaglandin E receptor EP1 controls impulsive behavior under stress. Proc Natl Acad Sci U S A 2005;102:16066–16071.

    Article  PubMed  CAS  Google Scholar 

  39. Tedeschi RE, Tedeschi DH, Mucha A, Cook L, Mattis PA, Fellows EJ. Effects of various centrally acting drugs on fighting behavior of mice. J Pharmacol Exp Ther 1959;125:28–34.

    PubMed  CAS  Google Scholar 

  40. Matsuoka T, Hirata M, Tanaka H, Takahashi Y, Murata T, Kabashima K, et al. Prostaglandin D2 as a mediator of allergic asthma. Science 2000;287:2013–2017.

    Article  PubMed  CAS  Google Scholar 

  41. Mizoguchi A, Eguchi N, Kimura K, Kiyohara Y, Qu WM, Huang ZL, et al. Dominant localization of prostaglandin D receptors on arachnoid trabecular cells in mouse basal forebrain and their involvement in the regulation of non-rapid eye movement sleep. Proc Natl Acad Sci U S A 2001;98:11674–11679.

    Article  PubMed  CAS  Google Scholar 

  42. Kitaoka S, Furuyashiki T, Nishi A, Shuto T, Koyasu S, Matsuoka T, et al. Prostaglandin E2 acts on EP1 receptor and amplifies both dopamine D1 and D2 receptor signaling in the striatum. J Neurosci 2007;27:12900–12907.

    Article  PubMed  CAS  Google Scholar 

  43. Nagamachi M, Sakata D, Kabashima K, Furuyashiki T, Murata T, Segi-Nishida E, et al. Facilitation of Th1-mediated immune response by prostaglandin E receptor EP1. J Exp Med 2007;204:2865–2874.

    Article  PubMed  CAS  Google Scholar 

  44. Watanabe K, Kawamori T, Nakatsugi S, Ohta T, Ohuchida S, Yamamoto H, et al. Role of the prostaglandin E receptor subtype EP1 in colon carcinogenesis. Cancer Res 1999;59:5093–5096.

    PubMed  CAS  Google Scholar 

  45. Hizaki H, Segi E, Sugimoto Y, Hirose M, Saji T, Ushikubi F, et al. Abortive expansion of the cumulus and impaired fertility in mice lacking the prostaglandin E receptor subtype EP(2). Proc Natl Acad Sci U S A 1999;96:10501–10506.

    Article  PubMed  CAS  Google Scholar 

  46. Kennedy CR, Zhang Y, Brandon S, Guan Y, Coffee K, Funk CD, et al. Salt-sensitive hypertension and reduced fertility in mice lacking the prostaglandin EP2 receptor. Nat Med 1999;5:217–220.

    Article  PubMed  CAS  Google Scholar 

  47. Yang L, Yamagata N, Yadav R, Brandon S, Courtney RL, Morrow JD, et al. Cancer-associated immunodeficiency and dendritic cell abnormalities mediated by the prostaglandin EP2 receptor. J Clin Invest 2003;111:727–735.

    PubMed  CAS  Google Scholar 

  48. Honda T, Segi-Nishida E, Miyachi Y, Narumiya S. Prostacyclin-IP signaling and prostaglandin E2-EP2/EP4 signaling both mediate joint inflammation in mouse collagen-induced arthritis. J Exp Med 2006;203:325–335.

    Article  PubMed  CAS  Google Scholar 

  49. Liang X, Wang Q, Hand T, Wu L, Breyer RM, Montine TJ, et al. Deletion of the prostaglandin E2 EP2 receptor reduces oxidative damage and amyloid burden in a model of Alzheimer’s disease. J Neurosci 2005;25:10180–10187.

    Article  PubMed  CAS  Google Scholar 

  50. Kunikata T, Yamane H, Segi E, Matsuoka T, Sugimoto Y, Tanaka S, et al. Suppression of allergic inflammation by the prostaglandin E receptor subtype EP3. Nat Immunol 2005;6:524–531.

    Article  PubMed  CAS  Google Scholar 

  51. Amano H, Hayashi I, Endo H, Kitasato H, Yamashina S, Maruyama T, et al. Host prostaglandin E(2)-EP3 signaling regulates tumorassociated angiogenesis and tumor growth. J Exp Med 2003;197:221–232.

    Article  PubMed  CAS  Google Scholar 

  52. Takeuchi K, Ukawa H, Kato S, Furukawa O, Araki H, Sugimoto Y, et al. Impaired duodenal bicarbonate secretion and mucosal integrity in mice lacking prostaglandin E-receptor subtype EP(3). Gastroenterology 1999;117:1128–1135.

    Article  PubMed  CAS  Google Scholar 

  53. Segi E, Sugimoto Y, Yamasaki A, Aze Y, Oida H, Nishimura T, et al. Patent ductus arteriosus and neonatal death in prostaglandin receptor EP4-deficient mice. Biochem Biophys Res Commun 1998;246:7–12.

    Article  PubMed  CAS  Google Scholar 

  54. Yoshida K, Oida H, Kobayashi T, Maruyama T, Tanaka M, Katayama T, et al. Stimulation of bone formation and prevention of bone loss by prostaglandin E EP4 receptor activation. Proc Natl Acad Sci U S A 2002;99:4580–4585.

    Article  PubMed  CAS  Google Scholar 

  55. Kabashima K, Saji T, Murata T, Nagamachi M, Matsuoka T, Segi E, et al. The prostaglandin receptor EP4 suppresses colitis, mucosal damage and CD4 cell activation in the gut. J Clin Invest 2002;109:883–893.

    PubMed  CAS  Google Scholar 

  56. Kabashima K, Sakata D, Nagamachi M, Miyachi Y, Inaba K, Narumiya S. Prostaglandin E2-EP4 signaling initiates skin immune responses by promoting migration and maturation of Langerhans cells. Nat Med 2003;9:744–749.

    Article  PubMed  CAS  Google Scholar 

  57. Miyaura C, Inada M, Suzawa T, Sugimoto Y, Ushikubi F, Ichikawa A, et al. Impaired bone resorption to prostaglandin E2 in prostaglandin E receptor EP4-knockout mice. J Biol Chem 2000;275:19819–19823.

    Article  PubMed  CAS  Google Scholar 

  58. Sakuma Y, Tanaka K, Suda M, Yasoda A, Natsui K, Tanaka I, et al. Crucial involvement of the EP4 subtype of prostaglandin E receptor in osteoclast formation by proinflammatory cytokines and lipopolysaccharide. J Bone Miner Res 2000;15:218–227.

    Article  PubMed  CAS  Google Scholar 

  59. Sugimoto Y, Segi E, Tsuboi K, Ichikawa A, Narumiya S. Female reproduction in mice lacking the prostaglandin F receptor. Roles of prostaglandin and oxytocin receptors in parturition. Adv Exp Med Biol 1998;449:317–321.

    PubMed  CAS  Google Scholar 

  60. Murata T, Ushikubi F, Matsuoka T, Hirata M, Yamasaki A, Sugimoto Y, et al. Altered pain perception and inflammatory response in mice lacking prostacyclin receptor. Nature 1997;388:678–682.

    Article  PubMed  CAS  Google Scholar 

  61. Kobayashi T, Tahara Y, Matsumoto M, Iguchi M, Sano H, Murayama T, et al. Roles of thromboxane A(2) and prostacyclin in the development of atherosclerosis in apoE-deficient mice. J Clin Invest 2004;114:784–794.

    PubMed  CAS  Google Scholar 

  62. Thomas DW, Mannon RB, Mannon PJ, Latour A, Oliver JA, Hoffman M, et al. Coagulation defects and altered hemodynamic responses in mice lacking receptors for thromboxane A2. J Clin Invest 1998;102:1994–2001.

    Article  PubMed  CAS  Google Scholar 

  63. Kabashima K, Murata T, Tanaka H, Matsuoka T, Sakata D, Yoshida N, et al. Thromboxane A2 modulates interaction of dendritic cells and T cells and regulates acquired immunity. Nat Immunol 2003;4:694–701.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Matsuoka.

About this article

Cite this article

Matsuoka, T., Narumiya, S. The roles of prostanoids in infection and sickness behaviors. J Infect Chemother 14, 270–278 (2008). https://doi.org/10.1007/s10156-008-0622-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10156-008-0622-3

Key words

Navigation