Skip to main content
Log in

Analysis of amino acid sequences of penicillin-binding protein 2 in clinical isolates of Neisseria gonorrhoeae with reduced susceptibility to cefixime and ceftriaxone

  • Original Article
  • Published:
Journal of Infection and Chemotherapy

Abstract

Neisseria gonorrhoeae strains with reduced susceptibility to cefixime and ceftriaxone, with minimum inhibitory concentrations (MICs) of cefixime of 0.125–0.25 μg/ml and ceftriaxone of 0.031–0.125 μg/ml, were isolated from male urethritis patients in Tokyo, Japan, in 2006. The amino acid sequences of PenA, penicillin-binding protein 2, in these strains were of two types: PenA mosaic and nonmosaic strains. In the PenA mosaic strain, some regions in the transpeptidase-encoding domain in PenA were similar to those of Neisseria perflava/sicca, Neisseria cinerea, Neisseria flavescens, Neisseria polysaccharea, and Neisseria meningitidis. In the PenA nonmosaic strain, there was a mutation of Ala-501 to Val in PenA. In addition, we performed homology modeling of PenA wild-type and mosaic strains and compared them. The results of the modeling studies suggested that reduced susceptibility to cephems such as cefixime and ceftriaxone is due to a conformational alteration of the β-lactam-binding pocket. These results also indicated that the mosaic structures and the above point mutation in PenA make a major contribution to the reduced susceptibility to cephem antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tapsall J. Antimicrobial resistance in Neisseria gonor-rhoeae. World Health Organization 2001; Report WHO/CDS/CSR/DRS/2001.3.

  2. Belland RJ, Morrison SG, Ison C, Huang WM. Neisseria gonorrhoeae acquires mutations in analogous regions of gyrA and parC in fluoroquinolone-resistant isolates. Mol Microbiol 1994;14:371–380.

    Article  PubMed  CAS  Google Scholar 

  3. Deguchi T, Yasuda M, Nakano M, Ozeki S, Ezaki T, Saito I, et al. Quinolone-resistant Neisseria gonorrhoeae: correlation of alterations in the GyrA subunit of DNA gyrase and the ParC subunit of topoisomerase IV with antimicrobial susceptibility profiles. Antimicrob Agents Chemother 1996;40:1020–1023.

    PubMed  CAS  Google Scholar 

  4. Su X, Lind I. Molecular basis of high-level ciprofloxacin resistance in Neisseria gonorrhoeae strains isolated in Denmark from 1995 to 1998. Antimicrob Agents Chemother 2001;45:117–123.

    Article  PubMed  CAS  Google Scholar 

  5. Tanaka M, Nakayama H, Haraoka M, Saika T, Kobayashi I, Naito S. Susceptibilities of Neisseria gonorrhoeae isolates containing amino acid substitutions in GyrA, with or without substitutions in ParC, to newer fluoroquinolones and other antibiotics. Antimicrob Agents Chemother 2000;44:192–195.

    Article  PubMed  CAS  Google Scholar 

  6. Tanaka M, Sakuma S, Takahashi K, Nagahuzi T, Saika T, Kobayashi I, et al. Analysis of quinolone resistance mechanisms in Neisseria gonorrhoeae isolates in vitro. Sex Transm Inf 1998;74:59–62.

    Article  CAS  Google Scholar 

  7. Centers of Disease Control for Prevention. Sexually transmitted diseases treatment guidelines, 2006. MMWR 2006;55(No. RR-11):1–94.

    Google Scholar 

  8. Kumamoto Y, Tsukamoto T, Nishiya I, Akaza H, Noguchi M, Kamidono S, et al. Sexually transmitted disease surveillance in Japan (rate per 100 000/year by disease, age and gender: 1998). Jpn J Sex Transm 1999;10:40–60.

    Google Scholar 

  9. Akasaka S, Muratani T, Yamada Y, Inatomi H, Takahashi K, Matsumoto T. Emergence of cephem-and aztreonam-high-resistant Neisseria gonorrhoeae that does not produce beta-lactamase. J Infect Chemother 2001;7:49–50.

    Article  PubMed  CAS  Google Scholar 

  10. Muratani T, Akasaka S, Kobayashi T, Yamada Y, Inatomi H, Takahashi K, et al. Outbreak of cefozopran (penicillin, oral cephems, and aztreonam)-resistant Neisseria gonorrhoeae in Japan. Antimicrob Agents Chemother 2001;45:3603–3606.

    Article  PubMed  CAS  Google Scholar 

  11. Japanese Society for Sexually Transmitted Disease. Guidelines for diagnosis and treatment of sexually transmitted disease 2006. Jpn J Sex Transm Dis 2006;17(1 Suppl):35–39.

    Google Scholar 

  12. Dougherty TJ, Koller AE, Tomasz A. Penicillin-binding proteins of penicillin-susceptible and intrinsically resistant Neisseria gonorrhoeae. Antimicrob Agents Chemother 1980;18:730–737.

    PubMed  CAS  Google Scholar 

  13. Brannigan JA, Tirodimos IA, Zhang QY, Dowson CG, Spratt BG. Insertion of an extra amino acid is the main cause of the low affinity of penicillin-binding protein 2 in penicillin-resistant strains of Neisseria gonorrhoeae. Mol Microbiol 1990;4:913–919.

    Article  PubMed  CAS  Google Scholar 

  14. Dowson CG, Jephcott AE, Gough KR, Spratt BG. Penicillin-binding protein 2 genes of non-beta-lactamase-producing, penicillin-resistant strains of Neisseria gonorrhoeae. Mol Microbiol 1989;3:35–41.

    Article  PubMed  CAS  Google Scholar 

  15. Smith JM, Dowson CG, Spratt BG. Localized sex in bacteria. Nature 1991;349:29–31.

    Article  PubMed  CAS  Google Scholar 

  16. Spratt BG. Hybrid penicillin-binding proteins in penicillin-resistant strains of Neisseria gonorrhoeae. Nature 1988;332:173–176.

    Article  PubMed  CAS  Google Scholar 

  17. Ameyama S, Onodera S, Takahata M, Minami S, Maki N, Endo K, et al. Mosaic-like structure of penicillin-binding protein 2 Gene (penA) in clinical isolates of Neisseria gonorrhoeae with reduced susceptibility to cefixime. Antimicrob Agents Chemother 2002;46:3744–3749.

    Article  PubMed  CAS  Google Scholar 

  18. Faruki H, Sparling PF. Genetics of resistance in a non-beta-lactamase-producing gonococcus with relatively high-level penicillin resistance. Antimicrob Agents Chemother 1986;30:856–860.

    PubMed  CAS  Google Scholar 

  19. Gill MJ, Simjee S, Al-Hattawi K, Robertson BD, Easmon CSF, Ison CA. Gonococcal resistance to beta-lactams and tetracycline involves mutation in loop 3 of the porin encoded at the penB locus. Antimicrob Agents Chemother 1998;42:2799–2803.

    PubMed  CAS  Google Scholar 

  20. Ropp PA, Hu M, Olesky M, Nicholas RA. Mutations in ponA, the gene encoding penicillin-binding protein 1, and a novel locus, penC, are required for high-level chromosomally mediated penicillin resistance in Neisseria gonorrhoeae. Antimicrob Agents Chemother 2002;46:769–777.

    Article  PubMed  CAS  Google Scholar 

  21. Zhao S, Tobiason DM, Hu M, Seifert HS, Nicholas RA. The penC mutation conferring antibiotic resistance in Neisseria gonorrhoeae arises from a mutation in the PilQ secretin that interferes with multimer stability. Mol Microbiol 2005;57:1238–1251.

    Article  PubMed  CAS  Google Scholar 

  22. Tanaka M, Nakayama H, Huruya K, Konomi I, Irie S, Kanayama A, et al. Analysis of mutations within multiple genes associated with resistance in a clinical isolate of Neisseria gonorrhoeae with reduced ceftriaxone susceptibility that shows a multidrug-resistant phenotype. Int J Antimicrob Agents 2006;27:20–26.

    Article  PubMed  CAS  Google Scholar 

  23. Obara Y, Yamai S, Nikkawa T, Shimoda Y, Miyamoto Y. Preservation and transportation of bacteria by a simple gelatin disk method. J Clin Microbiol 1981;14:61–66.

    PubMed  CAS  Google Scholar 

  24. Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard. 7th ed. M7-A7 26(2). Wayne: Clinical and Laboratory Standards Institute: 2007.

    Google Scholar 

  25. PRIME 1.5. Schrodinger, LLC, Portland.

  26. Dessen A, Mouz N, Gordon E, Hopkins J, Dideberg O. Crystal structure of PBP2x from a highly penicillin-resistant Streptococcus pneumoniae clinical isolate: a mosaic framework containing 83 mutations. J Biol Chem 2001;276:45106–45112.

    Article  PubMed  CAS  Google Scholar 

  27. Case DA, Cheatham III TE, Darden TA, Simmerling CL, Wang J, Duke RE, et al. AMBER 8. San Francisco: University of California; 2004.

    Google Scholar 

  28. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys 1983;79:926–935.

    Article  CAS  Google Scholar 

  29. Goffin C, Ghuysen JM. Biochemistry and comparative genomics of SxxK superfamily acyltransferases offer a clue to the mycobacterial paradox: presence of penicillin-susceptible target proteins versus lack of efficiency of penicillin as therapeutic agent. Microbiol Mol Biol Rev 2002;66:702–738.

    Article  PubMed  CAS  Google Scholar 

  30. Hagman KE, Pan W, Spratt BG, Balthazar JT, Judd RC, Shafer WM. Resistance of Neisseria gonorrhoeae to antimicrobial hydrophobic agents is modulated by the mtrRCDE efflux system. Microbiology 1995;141(Pt 3):611–622.

    PubMed  CAS  Google Scholar 

  31. Hagman KE, Shafer WM. Transcriptional control of the mtr efflux system of Neisseria gonorrhoeae. J Bacteriol 1995;177:4162–4165.

    PubMed  CAS  Google Scholar 

  32. Zarantonelli L, Borthagaray G, Lee EH, Shafer WM. Decreased azithromycin susceptibility of Neisseria gonorrhoeae due to mtrR mutations. Antimicrob Agents Chemother 1999;43:2468–2472.

    PubMed  CAS  Google Scholar 

  33. Saika T, Nishiyama T, Kanayama A, Kobayashi I, Nakayama H, Tanaka M, et al. Comparison of Neisseria gonorrhoeae isolates from the genital tract and pharynx of two gonorrhea patients. J Infect Chemother 2001;7:175–179.

    Article  PubMed  CAS  Google Scholar 

  34. Tanaka M, Nakayama H, Notomi T, Irie S, Tsunoda Y, Okadome A, et al. Antimicrobial resistance of Neisseria gonorrhoeae in Japan, 1993–2002: continuous increase of ciprofloxacin-resistant isolates. Int J Antimicrob Agents 2004;24(Suppl 1):S15–S22.

    Article  PubMed  CAS  Google Scholar 

  35. Takahata S, Senju N, Osaki Y, Yoshida T, Ida T. Amino acid substitutions in mosaic penicillin-binding protein 2 associated with reduced susceptibility to cefixime in clinical isolates of Neisseria gonorrhoeae. Antimicrob Agents Chemother 2006;50:3638–3645.

    Article  PubMed  CAS  Google Scholar 

  36. Whiley DM, Limnios EA, Ray S, Sloots TP, Tapsall JW. Diversity of penA alterations and subtypes in Neisseria gonorrhoeae strains from Sydney, Australia, that are less susceptible to ceftriaxone. Antimicrob Agents Chemother 2007;51:3111–3116.

    Article  PubMed  CAS  Google Scholar 

  37. Spratt BG, Zhang QY, Jones DM, Hutchison A, Brannigan JA, Dowson CG. Recruitment of a penicillin-binding protein gene from Neisseria flavescens during the emergence of penicillin resistance in Neisseria meningitidis. Proc Natl Acad Sci USA 1989;86:8988–8992.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuyoshi Osaka.

About this article

Cite this article

Osaka, K., Takakura, T., Narukawa, K. et al. Analysis of amino acid sequences of penicillin-binding protein 2 in clinical isolates of Neisseria gonorrhoeae with reduced susceptibility to cefixime and ceftriaxone. J Infect Chemother 14, 195–203 (2008). https://doi.org/10.1007/s10156-008-0610-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10156-008-0610-7

Key words

Navigation