Skip to main content

Advertisement

Log in

Reciprocal expression of the immune response genes CXCR3 and IFI44L as module hubs are associated with patient survivals in primary central nervous system lymphoma

  • Original Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Here, we investigated expression modules reflecting the reciprocal expression of the cancer microenvironment and immune response-related genes associated with poor prognosis in primary central nervous system lymphoma (PCNSL).

Methods

Weighted gene coexpression network analysis revealed representative modules, including neurogenesis, immune response, anti-virus, microenvironment, gene expression and translation, extracellular matrix, morphogenesis, and cell adhesion in the transcriptome data of 31 PCNSL samples.

Results 

Gene expression networks were also reflected by protein–protein interaction networks. In particular, some of the hub genes were highly expressed in patients with PCNSL with prognoses as follows: AQP4, SLC1A3, GFAP, CXCL9, CXCL10, GBP2, IFI6, OAS2, IFIT3, DCN, LRP1, and LUM with good prognosis; and STAT1, IFITM3, GZMB, ISG15, LY6E, TGFB1, PLAUR, MMP4, FTH1, PLAU, CSF3R, FGR, POSTN, CCR7, TAS1R3, small ribosomal subunit genes, and collagen type 1/3/4/6 genes with poor prognosis. Furthermore, prognosis prediction formulae were constructed using the Cox proportional-hazards regression model, which demonstrated that the IP-10 receptor gene CXCR3 and type I interferon-induced protein gene IFI44L could predict patient survival in PCNSL.

Conclusion

These results indicate that the differential expression and balance of immune response and microenvironment genes may be required for PCNSL tumor growth or prognosis prediction, which would help understanding the mechanism of tumorigenesis and potential therapeutic targets in PCNSL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

Data and materials for the study are included in the manuscript and supplementary information.

Abbreviations

ABC:

Activated B cell

AUC:

Area under the curve

BBB:

Blood–brain barrier

CI:

Confidential interval

CNS:

Central nervous system

COL:

Collagen

DEGs:

Differentially expressed genes

DLBCL:

Diffuse large B cell lymphoma

EBV:

Epstein–Barr virus

ECM:

Extracellular matrix

FDR:

False discovery rate

FL:

Follicular lymphoma

FPKM:

Fragments per kilobase of exon per million reads mapped

GO:

Gene ontology

GSEA:

Gene set enrichment analysis

HD-MTX:

High-dose methotrexate

HR:

Hazard ratio

IELSG:

International Extranodal Lymphoma Study Group

KEGG:

Kyoto Encyclopedia of Genes and Genomes

KPS:

Karnofsky Performance Status

LDH:

Lactate dehydrogenase

MAD:

Mean absolute deviation

MCODE:

Molecular Complex Detection

MSKCC:

Memorial Sloan Kettering Cancer Center

NAFLD:

Non-alcoholic fatty liver disease

NGS:

Next generation sequencing

NHL:

Non-Hodgkin’s lymphoma

non-GCB:

Non-germinal center B cell-like

OS:

Overall survival

PCNSL:

Primary central nervous system lymphoma

PKA:

Protein kinase A

PPI:

Protein–protein interaction

PRPS:

Ribosomal subunits

ROC:

Receiver operating characteristic

SNV/indel:

Single nucleotide variant/insertion/deletion

STRING:

Search Tool of the Retrieval of Interacting Genes Database

WCNA:

Weighted correlation network analysis

WGCNA:

Weighted gene coexpression network analysis

WHO:

World Health Organization

References

  1. Louis DN, Perry A, Reifenberger G et al (2016) The 2016 world health organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820

    Article  PubMed  Google Scholar 

  2. Fox CP, Phillips EH, Smith J et al (2019) Guidelines for the diagnosis and management of primary central nervous system diffuse large B-cell lymphoma. Br J Haematol 184:348–363

    Article  PubMed  Google Scholar 

  3. Hans CP, Weisenburger DD, Greiner TC et al (2004) Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood 103:275–282

    Article  CAS  PubMed  Google Scholar 

  4. Courts C, Montesinos-Rongen M, Brunn A et al (2008) Recurrent inactivation of the PRDM1 gene in primary central nervous system lymphoma. J Neuropathol Exp Neurol 67:720–727

    Article  CAS  PubMed  Google Scholar 

  5. Raoux D, Duband S, Forest F et al (2010) Primary central nervous system lymphoma: immunohistochemical profile and prognostic significance. Neuropathology 30:232–240

    Article  PubMed  Google Scholar 

  6. Chukwueke UN, Nayak L (2019) Central nervous system lymphoma. Hematol Oncol Clin North Am 33:597–611

    Article  PubMed  Google Scholar 

  7. Montesinos-Rongen M, Siebert R, Deckert M (2009) Primary lymphoma of the central nervous system: just DLBCL or not? Blood 113:7–10

    Article  CAS  PubMed  Google Scholar 

  8. Grommes C, DeAngelis LM (2017) Primary CNS lymphoma. J Clin Oncol 35:2410–2418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Prodduturi P, Bierman PJ (2012) Current and emerging pharmacotherapies for primary CNS lymphoma. Clin Med Insights Oncol 6:219–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mead GM, Bleehen NM, Gregor A et al (2000) A medical research council randomized trial in patients with primary cerebral non-Hodgkin lymphoma: cerebral radiotherapy with and without cyclophosphamide, doxorubicin, vincristine, and prednisone chemotherapy. Cancer 89:1359–1370

    Article  CAS  PubMed  Google Scholar 

  11. Gavrilovic IT, Hormigo A, Yahalom J et al (2006) Long-term follow-up of high-dose methotrexate-based therapy with and without whole brain irradiation for newly diagnosed primary CNS lymphoma. J Clin Oncol 24:4570–4574

    Article  CAS  PubMed  Google Scholar 

  12. Thiel E, Korfel A, Martus P et al (2010) High-dose methotrexate with or without whole brain radiotherapy for primary CNS lymphoma (G-PCNSL-SG-1): a phase 3, randomised, non-inferiority trial. Lancet Oncol 11:1036–1047

    Article  CAS  PubMed  Google Scholar 

  13. Langner-Lemercier S, Houillier C, Soussain C et al (2016) Primary CNS lymphoma at first relapse/progression: characteristics, management, and outcome of 256 patients from the French LOC network. Neuro Oncol 18:1297–1303

    Article  PubMed  PubMed Central  Google Scholar 

  14. Nayak L, Hedvat C, Rosenblum MK et al (2011) Late relapse in primary central nervous system lymphoma: clonal persistence. Neuro Oncol 13:525–529

    Article  PubMed  PubMed Central  Google Scholar 

  15. Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinform 9:559

    Article  Google Scholar 

  16. Zhang B, Horvath S (2005) A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol. https://doi.org/10.2202/1544-6115.1128

    Article  PubMed  Google Scholar 

  17. Presson AP, Yoon NK, Bagryanova L et al (2011) Protein expression based multimarker analysis of breast cancer samples. BMC Cancer 11:230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Langfelder P, Mischel PS, Horvath S (2013) When is hub gene selection better than standard meta-analysis? PLoS ONE 8:e61505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Luo Y, Coskun V, Liang A et al (2015) Single-cell transcriptome analyses reveal signals to activate dormant neural stem cells. Cell 161:1175–1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bruno A, Boisselier B, Labreche K et al (2014) Mutational analysis of primary central nervous system lymphoma. Oncotarget 5:5065–5075

    Article  PubMed  PubMed Central  Google Scholar 

  21. Braggio E, Van Wier S, Ojha J et al (2015) Genome-wide analysis uncovers novel recurrent alterations in primary central nervous system lymphomas. Clin Cancer Res 21:3986–3994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vater I, Montesinos-Rongen M, Schlesner M et al (2015) The mutational pattern of primary lymphoma of the central nervous system determined by whole-exome sequencing. Leukemia 29:677–685

    Article  CAS  PubMed  Google Scholar 

  23. Zhou Y, Liu W, Xu Z et al (2018) Analysis of genomic alteration in primary central nervous system lymphoma and the expression of some related genes. Neoplasia 20:1059–1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Takashima Y, Sasaki Y, Hayano A et al (2018) Target amplicon exome-sequencing identifies promising diagnosis and prognostic markers involved in RTK-RAS and PI3K-AKT signaling as central oncopathways in primary central nervous system lymphoma. Oncotarget 9:27471–27486

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kaulen LD, Erson-Omay EZ, Henegariu O et al (2021) Exome sequencing identifies SLIT2 variants in primary CNS lymphoma. Br J Haematol 193:375–379

    Article  CAS  PubMed  Google Scholar 

  26. Gandhi MK, Hoang T, Law SC et al (2021) EBV-associated primary CNS lymphoma occurring after immunosuppression is a distinct immunobiological entity. Blood 137:1468–1477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Takashima Y, Kawaguchi A, Sato R et al (2019) Differential expression of individual transcript variants of PD-1 and PD-L2 genes on Th-1/Th-2 status is guaranteed for prognosis prediction in PCNSL. Sci Rep 9:10004

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chen Z, Shen Z, Zhang Z et al (2021) RNA-associated co-expression network identifies novel biomarkers for digestive system cancer. Front Genet 12:659788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102:15545–15550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yu G, He QY (2016) ReactomePA: an R/Bioconductor package for reactome pathway analysis and visualization. Mol BioSyst 12:477–479

    Article  CAS  PubMed  Google Scholar 

  31. Takashima Y, Hamano M, Fukai J et al (2020) GSEA-assisted gene signatures valid for combinations of prognostic markers in PCNSL. Sci Rep 10:8435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yu G, Wang LG, Yan GR et al (2015) DOSE: an R/Bioconductor package for disease ontology semantic and enrichment analysis. Bioinformatics 31:608–609

    Article  CAS  PubMed  Google Scholar 

  33. Szklarczyk D, Gable AL, Lyon D et al (2019) STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47:D607–D613

    Article  CAS  PubMed  Google Scholar 

  34. Bader GD, Hogue CW (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform 4:2

    Article  Google Scholar 

  35. Tashiro K, Tada H, Heilker R et al (1993) Signal sequence trap: a cloning strategy for secreted proteins and type I membrane proteins. Science 261:600–603

    Article  CAS  PubMed  Google Scholar 

  36. Venetz D, Ponzoni M, Schiraldi M et al (2010) Perivascular expression of CXCL9 and CXCL12 in primary central nervous system lymphoma: T-cell infiltration and positioning of malignant B cells. Int J Cancer 127:2300–2312

    Article  CAS  PubMed  Google Scholar 

  37. Gao P, Grigoryev DN, Rafaels NM et al (2010) CD14, a key candidate gene associated with a specific immune response to cockroach. Clin Exp Allergy 40:1353–1364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Luo S, Wu R, Li Q et al (2022) Epigenetic regulation of IFI44L expression in monocytes affects the functions of monocyte-derived dendritic cells in systemic lupus erythematosus. J Immunol Res 2022:4053038

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lei J, Yin X, Shang H et al (2019) IP-10 is highly involved in HIV infection. Cytokine 115:97–103

    Article  CAS  PubMed  Google Scholar 

  40. Ozturk T, Kollhoff A, Anderson AM et al (2019) Linked CSF reduction of phosphorylated tau and IL-8 in HIV associated neurocognitive disorder. Sci Rep 9:8733

    Article  PubMed  PubMed Central  Google Scholar 

  41. Fang M, Xu N, Shao X et al (2012) Inhibitory effects of human immunodeficiency virus gp120 and Tat on CpG-A-induced inflammatory cytokines in plasmacytoid dendritic cells. Acta Biochim Biophys Sin (Shanghai) 44:797–804

    Article  CAS  PubMed  Google Scholar 

  42. Fletcher JS, Wu J, Jessen WJ et al (2019) Cxcr3-expressing leukocytes are necessary for neurofibroma formation in mice. JCI Insight 4:e98601

    Article  PubMed  PubMed Central  Google Scholar 

  43. Nitcheu J, Bonduelle O, Combadiere C et al (2003) Perforin-dependent brain-infiltrating cytotoxic CD8+ T lymphocytes mediate experimental cerebral malaria pathogenesis. J Immunol 170:2221–2228

    Article  CAS  PubMed  Google Scholar 

  44. Campanella GS, Tager AM, El Khoury JK et al (2008) Chemokine receptor CXCR3 and its ligands CXCL9 and CXCL10 are required for the development of murine cerebral malaria. Proc Natl Acad Sci U S A 105:4814–4819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Suidan GL, Mcdole JR, Chen Y et al (2008) Induction of blood brain barrier tight junction protein alterations by CD8 T cells. PLoS ONE 3:e3037

    Article  PubMed  PubMed Central  Google Scholar 

  46. Martín-Fontecha A, Thomsen LL, Brett S et al (2004) Induced recruitment of NK cells to lymph nodes provides IFN-gamma for T(H)1 priming. Nat Immunol 5:1260–1265

    Article  PubMed  Google Scholar 

  47. Hansen DS, Bernard NJ, Nie CQ et al (2007) NK cells stimulate recruitment of CXCR3+ T cells to the brain during Plasmodium berghei-mediated cerebral malaria. J Immunol 178:5779–5788

    Article  CAS  PubMed  Google Scholar 

  48. Jinquan T, Jing C, Jacobi HH et al (2000) CXCR3 expression and activation of eosinophils: role of IFN-gamma-inducible protein-10 and monokine induced by IFN-gamma. J Immunol 165:1548–1556

    Article  CAS  PubMed  Google Scholar 

  49. Shen Q, Zhang R, Bhat NR (2006) MAP kinase regulation of IP10/CXCL10 chemokine gene expression in microglial cells. Brain Res 1086:9–16

    Article  CAS  PubMed  Google Scholar 

  50. Bonacchi A, Romagnani P, Romanelli RG et al (2001) Signal transduction by the chemokine receptor CXCR3: activation of Ras/ERK, Src, and phosphatidylinositol 3-kinase/Akt controls cell migration and proliferation in human vascular pericytes. J Biol Chem 276:9945–9954

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported in part by the MEXT KAKENHI Grant Number 21H03045 to RY. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Funding

This study was supported in part by the MEXT KAKENHI Grant Number 21H03045 to RY. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

YT and RY designed the experiments. JF, YI, KK and HH diagnosed and treated patients and collected samples. YT, MH, KY, AH and RY performed the experiments. YT, MH, KY, AH and RY analyzed data. YT and RY wrote the manuscript.

Corresponding author

Correspondence to Ryuya Yamanaka.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

All experiments comply with the Ethics Committee of Kyoto Prefectural University of Medicine (RBMR-G-146).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1686 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takashima, Y., Hamano, M., Yoshii, K. et al. Reciprocal expression of the immune response genes CXCR3 and IFI44L as module hubs are associated with patient survivals in primary central nervous system lymphoma. Int J Clin Oncol 28, 468–481 (2023). https://doi.org/10.1007/s10147-022-02285-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-022-02285-8

Keywords

Navigation