Skip to main content

Advertisement

Log in

The usefulness of microRNA in urine and saliva as a biomarker of gastroenterological cancer

  • Invited Review Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

MicroRNA (miR) is a type of short non-coding RNA comprising 21–25 nucleotides. While it has been researched widely, its relationship with cancer was clarified recently and it was found to play a significant role in the development and progression of cancer. Furthermore, miR can remain stable for relatively long periods in the blood by being present in exosomes (extracellular microvesicles) or by forming a complex with the Ago2 protein, which gives rise to cancer-specific miR. It is known that miR can indicate the presence and extent of cancer progression. Several reports have proved that miR in urine and saliva is detected in urinary and oral cancer, respectively, and recent studies have also shown it to be present in cases of gastroenterological cancer, showing evidence of it being a biomarker for cancer. To gather further knowledge on this topic, this review aims to summarize the usefulness of urinary and salivary miR as a biomarker for gastroenterological cancer and discuss its existence, stability mechanism, and direction of future research. The findings will be relevant for physicians and oncologists who routinely treat patients with gastric cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Schochter F, Friedl TWP, deGregorio A et al (2019) Are circulating tumor cells (CTCs) ready for clinical use in breast cancer? An overview of completed and ongoing trials using CTCs for clinical treatment decisions. Cells 8:1412

    Article  CAS  PubMed Central  Google Scholar 

  2. Lustberg MB, Stover DG, Chalmers JJ (2018) Implementing liquid biopsies in clinical trials: state of affairs, opportunities, and challenges. Cancer J 24:61–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ignatiadis M, Rack B, Rothé F et al (2016) Liquid biopsy-based clinical research in early breast cancer: the EORTC 90091–10093 treat CTC trial. Eur J Cancer 63:97–104

    Article  PubMed  Google Scholar 

  4. Alunni-Fabbroni M, Rönsch K, Huber T et al (2019) Circulating DNA as prognostic biomarker in patients with advanced hepatocellular carcinoma: a translational exploratory study from the SORAMIC trial. J Transl Med 17:328

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Nicholls JM, Lee VH, Chan SK et al (2019) Negative plasma Epstein-Barr virus DNA nasopharyngeal carcinoma in an endemic region and its influence on liquid biopsy screening programmes. Br J Cancer 121:690–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wei B, Zhao C, Li J et al (2019) Combined plasma and tissue genotyping of EGFR T790M benefits NSCLC patients: a real-world clinical example. Mol Oncol 13:1226–1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Amelio I, Bertolo R, Bove P et al (2020) Liquid biopsies and cancer omics. Cell Death Discov 6:131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sacco A, Forgione L, Carotenuto M et al (2020) Circulating tumor DNA testing opens new perspectives in melanoma management. Cancers (Basel) 12:2914

    Article  CAS  Google Scholar 

  9. Aggarwal C, Rolfo CD, Oxnard GR et al (2021) Strategies for the successful implementation of plasma-based NSCLC genotyping in clinical practice. Nat Rev Clin Oncol 18:56–62

    Article  PubMed  Google Scholar 

  10. Sholl LM, Hirsch FR, Hwang D et al (2020) The promises and challenges of tumor mutation burden as an immunotherapy biomarker: a perspective from the international association for the study of lung cancer pathology committee. J Thorac Oncol 15:1409–1424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Guo R, Luo J, Chang J et al (2020) MET-dependent solid tumours—molecular diagnosis and targeted therapy. Nat Rev Clin Oncol 17:569–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Melchardt T, Magnes T, Hufnagl C et al (2018) Clonal evolution and heterogeneity in metastatic head and neck cancer—an analysis of the Austrian Study Group of Medical Tumour Therapy study group. Eur J Cancer 93:69–78

    Article  PubMed  Google Scholar 

  13. Heitzer E, Perakis S, Geigl JB et al (2017) The potential of liquid biopsies for the early detection of cancer. NPJ Precis Oncol 1:36

    Article  PubMed  PubMed Central  Google Scholar 

  14. Asante DB, Calapre L, Ziman M et al (2020) Liquid biopsy in ovarian cancer using circulating tumor DNA and cells: ready for prime time? Cancer Lett 468:59–71

    Article  CAS  PubMed  Google Scholar 

  15. Takeshita N, Hoshino I, Mori M et al (2013) Serum microRNA expression profile: miR-1246 as a novel diagnostic and prognostic biomarker for oesophageal squamous cell carcinoma. Br J Cancer 108:644–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hoshino I, Ishige F, Iwatate Y et al (2020) Usefulness of serum miR-1246/miR-106b ratio in patients with esophageal squamous cell carcinoma. Oncol Lett 20:350

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hoshino I, Nabeya Y, Takiguchi N et al (2020) Prognostic impact of p53 and/or NY-ESO-1 autoantibody induction in patients with gastroenterological cancers. Ann Gastroenterol Surg 4:275–282

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hoshino I, Nabeya Y, Takiguchi N et al (2020) Inducing multiple antibodies to treat squamous cell esophageal carcinoma. BMC Cancer 20:1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bhawal R, Oberg AL, Zhang S et al (2020) Challenges and opportunities in clinical applications of blood-based proteomics in cancer. Cancers (Basel) 12:2428

    Article  CAS  Google Scholar 

  20. Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9:102–114

    Article  CAS  PubMed  Google Scholar 

  21. Liu J, Carmell MA, Rivas FV et al (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305:1437–1441

    Article  CAS  PubMed  Google Scholar 

  22. Dykxhoorn DM (2010) MicroRNAs and metastasis: little RNAs go a long way. Cancer Res 70:6401–6406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kong YW, Ferland-McCollough D, Jackson TJ et al (2012) microRNAs in cancer management. Lancet Oncol 13:e249-258

    Article  CAS  PubMed  Google Scholar 

  24. Isozaki Y, Hoshino I, Akutsu Y et al (2015) Usefulness of microRNA-375 as a prognostic and therapeutic tool in esophageal squamous cell carcinoma. Int J Oncol 46:1059–1066

    Article  CAS  PubMed  Google Scholar 

  25. Kano M, Seki N, Kikkawa N et al (2010) miR-145, miR-133a and miR-133b: Tumor-suppressive miRNAs target FSCN1 in esophageal squamous cell carcinoma. Int J Cancer 127:2804–2814

    Article  CAS  PubMed  Google Scholar 

  26. Sohel MMH (2020) Circulating microRNAs as biomarkers in cancer diagnosis. Life Sci 248:117473

    Article  CAS  PubMed  Google Scholar 

  27. Hoshino I, Matsubara H (2013) MicroRNAs in cancer diagnosis and therapy: from bench to bedside. Surg Today 43:467–478

    Article  CAS  PubMed  Google Scholar 

  28. Turchinovich A, Weiz L, Langheinz A et al (2011) Characterization of extracellular circulating microRNA. Nucleic Acids Res 39:7223–7233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lakshmi S, Hughes TA, Priya S (2020) Exosomes and exosomal RNAs in breast cancer: a status update. Eur J Cancer 144:252–268

    Article  PubMed  CAS  Google Scholar 

  30. Cochetti G, Cari L, Nocentini G et al (2020) Detection of urinary miRNAs for diagnosis of clear cell renal cell carcinoma. Sci Rep 10:21290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Outeiro-Pinho G, Barros-Silva D, Aznar E et al (2020) MicroRNA-30a-5p(me): a novel diagnostic and prognostic biomarker for clear cell renal cell carcinoma in tissue and urine samples. J Exp Clin Cancer Res 39:98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Deutsch FT, Khoury SJ, Sunwoo JB et al (2020) Application of salivary noncoding microRNAs for the diagnosis of oral cancers. Head Neck 42:3072–3083

    Article  PubMed  Google Scholar 

  33. Ishige F, Hoshino I, Iwatate Y et al (2020) MIR1246 in body fluids as a biomarker for pancreatic cancer. Sci Rep 10:8723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yoshizawa N, Sugimoto K, Tameda M et al (2020) miR-3940-5p/miR-8069 ratio in urine exosomes is a novel diagnostic biomarker for pancreatic ductal adenocarcinoma. Oncol Lett 19:2677–2684

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Yasui T, Yanagida T, Ito S et al (2017) Unveiling massive numbers of cancer-related urinary-microRNA candidates via nanowires. Sci Adv 3:e1701133

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hoshino I, Ishige F, Iwatate Y et al (2021) Cell-free microRNA-1246 in different body fluids as a diagnostic biomarker for esophageal squamous cell carcinoma. PLoS ONE 16:e0248016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hasano Ğlu S, Göncü BS, Yücesan E et al (2021) Investigating differential miRNA expression profiling using serum and urine specimens for detecting potential biomarker for early prostate cancer diagnosis. Turk J Med Sci

  38. Wang G, Kwan BC, Lai FM et al (2010) Expression of microRNAs in the urinary sediment of patients with IgA nephropathy. Dis Markers 28:79–86

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wang G, Kwan BC, Lai FM et al (2012) Urinary miR-21, miR-29, and miR-93: novel biomarkers of fibrosis. Am J Nephrol 36:412–418

    Article  CAS  PubMed  Google Scholar 

  40. Vickers KC, Remaley AT (2012) Lipid-based carriers of microRNAs and intercellular communication. Curr Opin Lipidol 23:91–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Arroyo JD, Chevillet JR, Kroh EM et al (2011) Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA 108:5003–5008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chevillet JR, Kang Q, Ruf IK et al (2014) Quantitative and stoichiometric analysis of the microRNA content of exosomes. Proc Natl Acad Sci USA 111:14888–14893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jenkins RH, Martin J, Phillips AO et al (2012) Pleiotropy of microRNA-192 in the kidney. Biochem Soc Trans 40:762–767

    Article  CAS  PubMed  Google Scholar 

  44. Beltrami C, Clayton A, Newbury LJ et al (2015) Stabilization of urinary microRNAs by association with exosomes and argonaute 2 protein. Noncoding RNA 1:151–166

    PubMed  PubMed Central  Google Scholar 

  45. Gallo A, Tandon M, Alevizos I et al (2012) The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS ONE 7:e30679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cheng L, Sun X, Scicluna BJ et al (2014) Characterization and deep sequencing analysis of exosomal and non-exosomal miRNA in human urine. Kidney Int 86:433–444

    Article  CAS  PubMed  Google Scholar 

  47. Ghafouri-Fard S, Shirvani-Farsani Z, Branicki W et al (2020) MicroRNA signature in renal cell carcinoma. Front Oncol 10:596359

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ashrafizadeh M, Hushmandi K, Hashemi M et al (2020) Role of microRNA/epithelial-to-mesenchymal transition axis in the metastasis of bladder cancer. Biomolecules 10(8):1159

    Article  CAS  PubMed Central  Google Scholar 

  49. Paiva RM, Zauli DAG, Neto BS et al (2020) Urinary microRNAs expression in prostate cancer diagnosis: a systematic review. Clin Transl Oncol 22:2061–2073

    Article  CAS  PubMed  Google Scholar 

  50. De Palma G, Di Lorenzo VF, Krol S et al (2019) Urinary exosomal shuttle RNA: promising cancer diagnosis biomarkers of lower urinary tract. Int J Biol Markers 34:101–107

    Article  PubMed  CAS  Google Scholar 

  51. Dioguardi M, Caloro GA, Laino L et al (2020) Circulating miR-21 as a potential biomarker for the diagnosis of oral cancer: a systematic review with meta-analysis. Cancers (Basel) 12:936

    Article  CAS  Google Scholar 

  52. Kao HW, Pan CY, Lai CH et al (2017) Urine miR-21-5p as a potential non-invasive biomarker for gastric cancer. Oncotarget 8:56389–56397

    Article  PubMed  PubMed Central  Google Scholar 

  53. Iwasaki H, Shimura T, Yamada T et al (2019) A novel urinary microRNA biomarker panel for detecting gastric cancer. J Gastroenterol 54:1061–1069

    Article  PubMed  Google Scholar 

  54. Abdalla MA, Haj-Ahmad Y (2012) Promising candidate urinary MicroRNA biomarkers for the early detection of hepatocellular carcinoma among high-risk hepatitis C virus Egyptian patients. J Cancer 3:19–31

    Article  CAS  PubMed  Google Scholar 

  55. Debernardi S, Massat NJ, Radon TP et al (2015) Noninvasive urinary miRNA biomarkers for early detection of pancreatic adenocarcinoma. Am J Cancer Res 5:3455–3466

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Silakit R, Loilome W, Yongvanit P et al (2017) Urinary microRNA-192 and microRNA-21 as potential indicators for liver fluke-associated cholangiocarcinoma risk group. Parasitol Int 66:479–485

    Article  CAS  PubMed  Google Scholar 

  57. Yoshizawa JM, Schafer CA, Schafer JJ et al (2013) Salivary biomarkers: toward future clinical and diagnostic utilities. Clin Microbiol Rev 26:781–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Michael A, Bajracharya SD, Yuen PS et al (2010) Exosomes from human saliva as a source of microRNA biomarkers. Oral Dis 16:34–38

    Article  CAS  PubMed  Google Scholar 

  59. Park NJ, Zhou H, Elashoff D et al (2009) Salivary microRNA: discovery, characterization, and clinical utility for oral cancer detection. Clin Cancer Res 15:5473–5477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Momen-Heravi F, Trachtenberg AJ, Kuo WP, Cheng YS (2014) Genomewide study of salivary MicroRNAs for detection of oral cancer. J Dent Res 93:86s–93s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zahran F, Ghalwash D, Shaker O et al (2015) Salivary microRNAs in oral cancer. Oral Dis 21:739–747

    Article  CAS  PubMed  Google Scholar 

  62. Liu CJ, Lin SC, Yang CC et al (2012) Exploiting salivary miR-31 as a clinical biomarker of oral squamous cell carcinoma. Head Neck 34:219–224

    Article  PubMed  Google Scholar 

  63. Duz MB, Karatas OF, Guzel E et al (2016) Identification of miR-139-5p as a saliva biomarker for tongue squamous cell carcinoma: a pilot study. Cell Oncol (Dordr) 39:187–193

    Article  CAS  Google Scholar 

  64. Wiklund ED, Gao S, Hulf T et al (2011) MicroRNA alterations and associated aberrant DNA methylation patterns across multiple sample types in oral squamous cell carcinoma. PLoS ONE 6:e27840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Salazar C, Nagadia R, Pandit P et al (2014) A novel saliva-based microRNA biomarker panel to detect head and neck cancers. Cell Oncol (Dordr) 37:331–338

    Article  CAS  Google Scholar 

  66. Matse JH, Yoshizawa J, Wang X et al (2015) Human salivary micro-RNA in patients with parotid salivary gland neoplasms. PLoS ONE 10:e0142264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Xie Z, Chen G, Zhang X et al (2013) Salivary microRNAs as promising biomarkers for detection of esophageal cancer. PLoS ONE 8:e57502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Xie ZJ, Chen G, Zhang XC et al (2012) Saliva supernatant miR-21: a novel potential biomarker for esophageal cancer detection. Asian Pac J Cancer Prev 13:6145–6149

    Article  PubMed  Google Scholar 

  69. Fendereski M, Zia MF, Shafiee M et al (2017) MicroRNA-196a as a potential diagnostic biomarker for esophageal squamous cell carcinoma. Cancer Invest 35:78–84

    Article  CAS  PubMed  Google Scholar 

  70. Sazanov AA, Kiselyova EV, Zakharenko AA et al (2017) Plasma and saliva miR-21 expression in colorectal cancer patients. J Appl Genet 58:231–237

    Article  CAS  PubMed  Google Scholar 

  71. Rapado-González Ó, Majem B, Álvarez-Castro A et al (2019) A Novel saliva-based miRNA signature for colorectal cancer diagnosis. J Clin Med 8:2029

    Article  PubMed Central  CAS  Google Scholar 

  72. Gao S, Chen LY, Wang P et al (2014) MicroRNA expression in salivary supernatant of patients with pancreatic cancer and its relationship with ZHENG. Biomed Res Int 1:756347

    Google Scholar 

  73. Humeau M, Vignolle-Vidoni A, Sicard F et al (2015) Salivary MicroRNA in pancreatic cancer patients. PLoS ONE 10:e0130996

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Machida T, Tomofuji T, Maruyama T et al (2016) miR-1246 and miR-4644 in salivary exosome as potential biomarkers for pancreatobiliary tract cancer. Oncol Rep 36:2375–2381

    Article  CAS  PubMed  Google Scholar 

  75. Konno M, Koseki J, Asai A et al (2019) Distinct methylation levels of mature microRNAs in gastrointestinal cancers. Nat Commun 10:3888

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isamu Hoshino.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest in association with the present study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoshino, I. The usefulness of microRNA in urine and saliva as a biomarker of gastroenterological cancer. Int J Clin Oncol 26, 1431–1440 (2021). https://doi.org/10.1007/s10147-021-01911-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-021-01911-1

Keywords

Navigation