Skip to main content

Advertisement

Log in

Molecular and genetic bases of neuroblastoma

  • Review Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

Neuroblastoma, which is derived from the sympathetic nervous system, is the second most common pediatric solid malignant tumor. This pediatric tumor has a heterogeneous course, ranging from spontaneous regression to inexorable progression and death, depending on the biological features of the tumor. Identification of risk groups on the basis of clinical and molecular prognostic variables has allowed tailor-made therapy to improve outcomes and minimize the risk of deleterious consequences of therapy. In Japan, current therapeutic stratification of patients with neuroblastoma is based on risk assessment according to combinations of age, tumor stage, MYCN status, DNA ploidy status, and histopathology; however, unfavorable neuroblastoma is still one of the most difficult tumors to cure, with only 40 % long-term survival despite intensive multimodal therapy. Further refined therapeutic stratification based on newly identified prognostic factors will be required to improve the outcome of patients with unfavorable neuroblastoma and reduce the side effects of therapies for patients with favorable neuroblastoma. In the present review, we describe recent topics on the molecular and genetic bases of neuroblastoma; we hope this review will be helpful for understanding the mechanism of neuroblastoma tumorigenesis and aggressiveness and for developing a new therapeutic stratification and new protocols for neuroblastoma treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Westermann F, Schwab M (2002) Genetic parameters of neuroblastomas. Cancer Lett 184:127–147

    Article  PubMed  CAS  Google Scholar 

  2. Maris JM, Hogarty MD, Bagatell R et al (2007) Neuroblastoma. Lancet 369:2106–2120

    Article  PubMed  CAS  Google Scholar 

  3. van Noesela MM, Versteeg R (2004) Pediatric neuroblastomas: genetic and epigenetic ‘danse macabre’. Gene 325:1–15

    Google Scholar 

  4. D’Angio GJ, Evans AE, Koop CE (1971) Special pattern of widespread neuroblastoma with a favourable prognosis. Lancet 297:1046–1049

    Article  Google Scholar 

  5. Kato GJ, Lee WM, Chen LL et al (1992) Max: functional domains and interaction with c-Myc. Genes Dev 6:81–92

    Article  PubMed  CAS  Google Scholar 

  6. Zindy F, Eischen CM, Randle DH et al (1998) Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev 12:2424–2433

    Article  PubMed  CAS  Google Scholar 

  7. Kohl NE, Kanda N, Schreck RR et al (1983) Transposition and amplification of oncogene related sequence in human neuroblastomas. Cell 35:359–367

    Article  PubMed  CAS  Google Scholar 

  8. Schwab M, Alitalo K, Klempnauer KH et al (1983) Amplified DNA with limited homology to myc cellular oncogene is shared by human neuroblastoma cell lines and a neuroblastoma tumor. Nature 305:245–248

    Article  PubMed  CAS  Google Scholar 

  9. Corvi R, Amler LC, Savelyeva L et al (1994) MYCN is retained in single copy at chromosome 2 band p23–24 during amplification in human neuroblastoma cells. Proc Natl Acad Sci USA 91:5523–5527

    Article  PubMed  CAS  Google Scholar 

  10. Schwab M (1998) Amplification of oncogenes in human cancer cells. Bioessays 20:473–479

    Article  PubMed  CAS  Google Scholar 

  11. Seeger RC, Brodeur GM, Sather H et al (1985) Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. N Engl J Med 313:1111–1116

    Article  PubMed  CAS  Google Scholar 

  12. Brodeur G, Seeger RC, Schwab M et al (1984) Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science 224:1121–1124

    Article  PubMed  CAS  Google Scholar 

  13. Rubie H, Hartmann O, Michon J et al (1997) Localized neuroblastoma: MYCN amplification is the main prognostic factor-results of the NBL 90 study. J Clin Oncol 15:1171–1182

    PubMed  CAS  Google Scholar 

  14. Caron H (1995) Allelic loss of chromosome 1 and additional chromosome 17 material are both unfavourable prognostic markers in neuroblastoma. Med Pediatr Oncol 24:215–221

    Article  PubMed  CAS  Google Scholar 

  15. Bown N, Cotterill S, Lastowska M et al (1999) Gain of chromosome arm 17q and adverse outcome in patients with neuroblastoma. N Engl J Med 340:1954–1961

    Article  PubMed  CAS  Google Scholar 

  16. Okabe-Kado J, Kasukabe T, Honma Y et al (2005) Clinical significance of serum NM23-H1 protein in neuroblastoma. Cancer Sci 96:653–660

    Article  PubMed  CAS  Google Scholar 

  17. Adida C, Berrebi D, Peuchmaur M et al (1998) Anti-apoptosis gene, survivin, and prognosis of neuroblastoma. Lancet 351:882–883

    Article  PubMed  CAS  Google Scholar 

  18. White PS, Maris JM, Beltinger C et al (1995) A region of consistent deletion in neuroblastoma maps within 1p36.2-3. Proc Natl Acad Sci USA 92:5520–5524

    Article  PubMed  CAS  Google Scholar 

  19. Caron H, Spieker N, Godfried M et al (2001) Chromosome bands 1p35–36 contain two distinct neuroblastoma tumor suppressor loci, one of which is imprinted. Genes Chromosom Cancer 30:168–174

    Article  PubMed  CAS  Google Scholar 

  20. Bauer A, Savelyeva L, Claas A et al (2001) Smallest region of overlapping deletion in 1p36 in human neuroblastoma: a 1 Mbp cosmid and PAC contig. Genes Chromosom Cancer 31:228–239

    Article  PubMed  CAS  Google Scholar 

  21. Brodeur GM (2003) Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer 3:203–216

    Article  PubMed  CAS  Google Scholar 

  22. Wei JS, Song YK, Durinck S et al (2008) The MYCN oncogene is a direct target of miR-34a. Oncogene 27:5204–5213

    Article  PubMed  CAS  Google Scholar 

  23. Cole KA, Attiyeh EF, Mosse YP et al (2008) A functional screen identifies miR-34a as a candidate neuroblastoma tumor suppressor gene. Mol Cancer Res 6:735–742

    Article  PubMed  CAS  Google Scholar 

  24. Bagchi A, Papazoglu C, Wu Y et al (2007) CHD5 is a tumor suppressor at human 1p36. Cell 128:459–475

    Article  PubMed  CAS  Google Scholar 

  25. Munirajan AK, Ando K, Mukai A et al (2008) KIF1Bbeta functions as a haploinsufficient tumor suppressor gene mapped to chromosome 1p36.2 by inducing apoptotic cell death. J Biol Chem 283:24426–24434

    Article  PubMed  CAS  Google Scholar 

  26. Guo C, White PS, Weiss MJ et al (1999) Allelic deletion at 11q23 is common in MYCN single copy neuroblastomas. Oncogene 18:4948–4957

    Article  PubMed  CAS  Google Scholar 

  27. Spitz R, Hero B, Ernestus K et al (2003) Deletions in chromosome arms 3p and 11q are new prognostic markers in localized and 4s neuroblastoma. Clin Cancer Res 9:52–58

    PubMed  CAS  Google Scholar 

  28. Attiyeh EF, London WB, Mosse YP et al (2005) Chromosome 1p and 11q deletions and outcome in neuroblastoma. N Engl J Med 353:2243–2253

    Article  PubMed  CAS  Google Scholar 

  29. Cohn SL, Pearson AD, London WB et al (2009) The International Neuroblastoma Risk Group (INRG) classification system: an INRG Task Force report. J Clin Oncol 27:289–297

    Article  PubMed  Google Scholar 

  30. Tomioka N, Oba S, Ohira M et al (2008) Novel risk stratification of patients with neuroblastoma by genomic signature which is independent of molecular signature. Oncogene 27:441–449

    Article  PubMed  CAS  Google Scholar 

  31. Ando K, Ohira M, Ozaki T et al (2008) Expression of TSLC1, a candidate tumor suppressor gene mapped to chromosome 11q23, is downregulated in unfavorable neuroblastoma without promoter hypermethylation. Int J Cancer 123:2087–2094

    Article  PubMed  CAS  Google Scholar 

  32. Ochiai H, Takenobu H, Nakagawa A et al (2010) Bmi1 is a MYCN target gene and regulates tumorigenesis via repression of KIF1Bβ and TSLC1 in neuroblastoma. Oncogene 29:2681–2690

    Article  PubMed  CAS  Google Scholar 

  33. Kogner P, Barbany G, Dominici C et al (1993) Coexpression of messenger RNA for TRK protooncogene and low affinity nerve growth factor receptor in neuroblastoma with favorable prognosis. Cancer Res 53:2044–2050

    PubMed  CAS  Google Scholar 

  34. Nakagawara A, Arima-Nakagawara M, Scavarda NJ et al (1993) Association between high levels of expression of the TRK gene and favorable outcome in human neuroblastoma. N Engl J Med 328:847–854

    Article  PubMed  CAS  Google Scholar 

  35. Nakagawara A, Azar CG, Scavarda NJ et al (1994) Expression and function of TRK-B and BDNF in human neuroblastomas. Mol Cell Biol 14:759–767

    PubMed  CAS  Google Scholar 

  36. Eggert A, Grotzer MA, Zuzak TJ et al (2001) Resistance to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in neuroblastoma cells correlates with a loss of caspase-8 expression. Cancer Res 61:1314–1319

    PubMed  CAS  Google Scholar 

  37. Teitz T, Wei T, Valentine MB et al (2000) Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nat Med 6:529–535

    Article  PubMed  CAS  Google Scholar 

  38. Ejeskar K, Aburatani H, Abrahamsson J et al (1998) Loss of heterozygosity of 3p markers in neuroblastoma tumours implicate a tumour-suppressor locus distal to the FHIT gene. Br J Cancer 77:1787–1791

    Article  PubMed  CAS  Google Scholar 

  39. Astuti D, Agathanggelou A, Honorio S et al (2001) RASSF1A promoter region CpG island hypermethylation in phaeochromocytomas and neuroblastoma tumours. Oncogene 20:7573–7577

    Article  PubMed  CAS  Google Scholar 

  40. Mosse YP, Laudenslager M, Khazi D et al (2004) Germline PHOX2B mutation in hereditary neuroblastoma. Am J Hum Genet 75:727–730

    Article  PubMed  CAS  Google Scholar 

  41. Trochet D, Bourdeaut F, Janoueix-Lerosey I et al (2004) Germ-line mutations of the paired-like homeobox 2B (PHOX2B) gene in neuroblastoma. Am J Hum Genet 74:761–764

    Article  PubMed  CAS  Google Scholar 

  42. Mossé YP, Laudenslager M, Longo L et al (2008) Identification of ALK as a major familial neuroblastoma predisposition gene. Nature 455:930–935

    Article  PubMed  Google Scholar 

  43. Janoueix-Lerosey I, Lequin D, Brugières L et al (2008) Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. Nature 455:967–970

    Article  PubMed  CAS  Google Scholar 

  44. George RE, Sanda T, Hanna M et al (2008) Activating mutations in ALK provide a therapeutic target in neuroblastoma. Nature 455:975–978

    Article  PubMed  CAS  Google Scholar 

  45. Chen Y, Takita J, Choi YL et al (2008) Oncogenic mutations of ALK kinase in neuroblastoma. Nature 455:971–974

    Article  PubMed  CAS  Google Scholar 

  46. Look AT, Hayes FA, Shuster JJ et al (1991) Clinical relevance of tumor cell ploidy and N-myc gene amplification in childhood neuroblastoma: a Pediatric Oncology Group study. J Clin Oncol 9:581–591

    PubMed  CAS  Google Scholar 

  47. Walton JD, Kattan DR, Thomas SK et al (2004) Characteristics of stem cells from human neuroblastoma cell lines and in tumors. Neoplasia 6:645–838

    Article  Google Scholar 

  48. Hansford LM, McKee AE, Zhang L et al (2007) Neuroblastoma cells isolated from bone marrow metastases contain a naturally enriched tumor-initiating cell. Cancer Res 67:11234–11243

    Article  PubMed  CAS  Google Scholar 

  49. Smith KM, Datti A, Fujitani M et al (2010) Selective targeting of neuroblastoma tumour-initiating cells by compounds identified in stem cell-based small molecule screens. EMBO Mol Med 2:371–384

    Article  PubMed  CAS  Google Scholar 

  50. Grinshtein N, Datti A, Fujitani M et al (2011) Small molecule kinase inhibitor screen identifies polo-like kinase 1 as a target for neuroblastoma tumor-initiating cells. Cancer Res 71:1385–1395

    Article  PubMed  CAS  Google Scholar 

  51. Corbeil D, Fargeas CA, Huttner WB (2001) Rat prominin, like its mouse and human orthologues, is a pentaspan membrane glycoprotein. Biochem Biophys Res Commun 285:939–944

    Article  PubMed  CAS  Google Scholar 

  52. O’Brien CA, Kreso A, Jamieson CHM (2010) Cancer stem cells and self-renewal. Clin Cancer Res 16:3113–3120

    Article  PubMed  Google Scholar 

  53. Takenobu H, Shimozato O, Nakamura T et al (2011) CD133 suppresses neuroblastoma cell differentiation via signal pathway modification. Oncogene 30:97–105

    Article  PubMed  CAS  Google Scholar 

  54. Mahller YY, Williams JP, Baird WH et al (2009) Neuroblastoma cell lines contain pluripotent tumor initiating cells that are susceptible to a targeted oncolytic virus. PLoS ONE 4:e4235

    Article  PubMed  Google Scholar 

  55. Shmelkov SV, Jun L, St Clair R et al (2004) Alternative promoters regulate transcription of the gene that encodes stem cell surface protein AC133. Blood 103:2055–2061

    Article  PubMed  CAS  Google Scholar 

  56. Schiapparelli P, Enguita-Germán M, Balbuena J et al (2010) Analysis of stemness gene expression and CD133 abnormal methylation in neuroblastoma cell lines. Oncol Rep 24:1355–1362

    PubMed  CAS  Google Scholar 

  57. Baba T, Convery PA, Matsumura N et al (2009) Epigenetic regulation of CD133 and tumorigenicity of CD133+ ovarian cancer cells. Oncogene 28:209–218

    Article  PubMed  CAS  Google Scholar 

  58. Yi JM, Tsai HC, Glöckner SC et al (2008) Abnormal DNA methylation of CD133 in colorectal and glioblastoma tumors. Cancer Res 68:8094–8103

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mr. Daniel Mrozek, Medical English Service, for editorial assistance. This work was supported in part by a Grant-in-Aid from the National Cancer Center Research and Development Fund of Japan (4), a Grant-in-Aid from the Ministry of Health, Labor, and Welfare of Japan for Third Term Comprehensive Control Research for Cancer, a Grant-in-Aid for Scientific Research (B) (24390269), and a Grant-in-Aid from the Uehara Memorial Foundation.

Conflict of interest

We have no financial relationships to disclose.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Takehiko Kamijo or Akira Nakagawara.

About this article

Cite this article

Kamijo, T., Nakagawara, A. Molecular and genetic bases of neuroblastoma. Int J Clin Oncol 17, 190–195 (2012). https://doi.org/10.1007/s10147-012-0415-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-012-0415-7

Keywords

Navigation