Skip to main content

Advertisement

Log in

Tumor imaging with multicolor fluorescent protein expression

  • Review Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

Imaging with fluorescent proteins has been revolutionary and has led to the new field of in vivo cell biology. Many new applications of this technology have been developed. Green fluorescent protein (GFP)-labeled or red fluorescent protein (RFP)-labeled HT-1080 human fibrosarcoma cells were used to determine clonality of metastasis by imaging of metastatic colonies after mixed implantation of the red and green fluorescent cells. Resulting pure red or pure green colonies were scored as clonal, whereas mixed yellow colonies were scored as nonclonal. Dual-color fluorescent cancer cells expressing GFP in the nucleus and RFP in the cytoplasm were engineered. The dual-color cancer cells enable real-time nuclear–cytoplasmic dynamics to be visualized in living cells in vivo, including mitosis and apoptosis. The nuclear and cytoplasmic behavior of dual-color cancer cells in real time in blood vessels was observed as they trafficked by various means or extravasated in an abdominal skin flap. Dual-color cancer cells were also visualized trafficking through lymphatic vessels where they were imaged via a skin flap. Seeding and arresting of single dual-color cancer cells in the lung, accumulation of cancer-cell emboli, cancer-cell viability, and metastatic colony formation were imaged in real time in an open-chest nude mouse model using assisted ventilation. Novel treatment was evaluated in these imageable models. UVC irradiation killed approximately 70% of the dual-color cancer cells in a nude mouse model. An RFP-expressing glioma was transplanted to the spinal cord of transgenic nude mice expressing nestin-driven green fluorescent protein (ND-GFP). In ND-GFP mice, GFP is expressed in nascent blood vessels and neural stem cells. ND-GFP cells staining positively for neuronal class III-β-tubulin or CD31 surrounded the tumor, suggesting that the tumor stimulated both neurogenesis and angiogenesis. The tumor caused paralysis and also metastasized to the brain. The Salmonella typhimurium A1-R tumor-targeting bacterial strain was administered in the orthotopic spinal cord glioma model. The treated animals had a significant increase in survival and decrease in paralysis. S. typhimurium A1-R was effective against primary bone tumor and lung metastasis expressing RFP in a nude mouse model. S. typhimurium A1-R was effective against both axillary lymph and popliteal lymph node metastases of human dual-color pancreatic cancer and fibrosarcoma cells, respectively, as well as lung metastasis of the fibrosarcoma in nude mice. Imaging with fluorescent proteins will reveal mechanisms of cancer progression and provide visual targets for novel therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

GFP:

Green fluorescent protein

RFP:

Red fluorescent protein

References

  1. Lin WC, Pretlow TP, Pretlow TG II et al (1990) Bacterial lacZ gene as a highly sensitive marker to detect micrometastasis formation during tumor progression. Cancer Res 50:2808–2817

    PubMed  CAS  Google Scholar 

  2. Brown EB, Campbell RB, Tsuzuki Y et al (2001) In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nat Med 7:864–868

    Article  PubMed  CAS  Google Scholar 

  3. Ciancio SJ, Coburn M, Hornsby PJ (2000) Cutaneous window for in vivo observations of organs and angiogenesis. J Surg Res 92:228–232

    Article  PubMed  CAS  Google Scholar 

  4. Naumov GN, Wilson SM, MacDonald IC et al (1999) Cellular expression of green fluorescent protein, coupled with high-resolution in vivo videomicroscopy, to monitor steps in tumor metastasis. J Cell Sci 112:1835–1842

    PubMed  CAS  Google Scholar 

  5. Contag CH, Jenkins D, Contag PR et al (2000) Use of reporter genes for optical measurements of neoplastic disease in vivo. Neoplasia 2:41–52

    Article  PubMed  CAS  Google Scholar 

  6. Burgos JS, Rosol M, Moats RA et al (2003) Time course of bioluminescent signal in orthotopic and heterotopic brain tumors in nude mice. BioTechniques 34:1184–1188

    PubMed  CAS  Google Scholar 

  7. Prasher DC, Eckenrode VK, Ward WW et al (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111:229–233

    Article  PubMed  CAS  Google Scholar 

  8. Chalfie M, Tu Y, Euskirchen G et al (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805

    Article  PubMed  CAS  Google Scholar 

  9. Cheng L, Fu J, Tsukamoto A et al (1996) Use of green fluorescent protein variants to monitor gene transfer and expression in mammalian cells. Nat Biotechnol 14:606–609

    Article  PubMed  CAS  Google Scholar 

  10. Cody CW, Prasher DC, Westler WM et al (1993) Chemical structure of the hexapeptide chromophore of the Aequorea green fluorescent protein. Biochemistry 32:1212–1218

    Article  PubMed  CAS  Google Scholar 

  11. Yang F, Moss LG, Phillips GN Jr (1996) The molecular structure of green fluorescent protein. Nat Biotechnol 14:1246–1251

    Article  PubMed  CAS  Google Scholar 

  12. Morin J, Hastings J (1971) Energy transfer in a bioluminescent system. J Cell Physiol 77:313–318

    Article  PubMed  CAS  Google Scholar 

  13. Cormack B, Valdivia R, Falkow S (1996) FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173:33–38

    Article  PubMed  CAS  Google Scholar 

  14. Crameri A, Whitehorn EA, Tate E et al (1996) Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat Biotechnol 14:315–319

    Article  PubMed  CAS  Google Scholar 

  15. Delagrave S, Hawtin RE, Silva CM et al (1995) Red-shifted excitation mutants of the green fluorescent protein. Biotechnology 13:151–154

    Article  PubMed  CAS  Google Scholar 

  16. Heim R, Cubitt AB, Tsien RY (1995) Improved green fluorescence. Nature 373:663–664

    Article  PubMed  CAS  Google Scholar 

  17. Zolotukhin S, Potter M, Hauswirth WW et al (1996) A ‘humanized’ green fluorescent protein cDNA adapted for high-level expression in mammalian cells. J Virol 70:4646–4654

    PubMed  CAS  Google Scholar 

  18. Gross LA, Baird GS, Hoffman RC et al (2000) The structure of the chromophore within DsRed, a red fluorescent protein from coral. Proc Natl Acad Sci USA 97:11990–11995

    Article  PubMed  CAS  Google Scholar 

  19. Fradkov AF, Chen Y, Ding L et al (2000) Novel fluorescent protein from Discosoma coral and its mutants possesses a unique far-red fluorescence. FEBS Lett 479:127–130

    Article  PubMed  CAS  Google Scholar 

  20. Chishima T, Miyagi Y, Tan Y et al (1997) Cancer invasion and micrometastasis visualized in live tissue by green fluorescent protein expression. Cancer Res 57:2042–2047

    PubMed  CAS  Google Scholar 

  21. Chishima T, Miyagi Y, Wang X et al (1997) Visualization of the metastatic process by green fluorescent protein expression. Anticancer Res 17:2377–2384

    PubMed  CAS  Google Scholar 

  22. Chishima T, Miyagi Y, Wang X et al (1997) Metastatic patterns of orthotopic human lung cancer in nude mice visualized live and in process by green fluorescent protein expression. Clin Exp Metastasis 15:547–552

    Article  PubMed  CAS  Google Scholar 

  23. Chishima T, Miyagi Y, Li L et al (1997) Use of histoculture and green fluorescent protein to visualize tumor cell host interaction. In Vitro Cell Dev Biol Anim 33:745–747

    Article  PubMed  CAS  Google Scholar 

  24. Yang M, Hasegawa S, Jiang P et al (1998) Widespread skeletal metastatic potential of human lung cancer revealed by green fluorescent protein expression. Cancer Res 58:4217–4221

    PubMed  CAS  Google Scholar 

  25. Yang M, Jiang P, Sun FX et al (1999) A fluorescent orthotopic bone metastasis model of human prostate cancer. Cancer Res 59:781–786

    PubMed  CAS  Google Scholar 

  26. Yang M, Chishima T, Wang X et al (1999) Multi-organ metastatic capability of Chinese hamster ovary cells revealed by green fluorescent protein (GFP) expression. Clin Exp Metastasis 17:417–422

    Article  PubMed  CAS  Google Scholar 

  27. Yang M, Baranov E, Jiang P et al (2002) Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases. Proc Natl Acad Sci USA 97:1206–1211

    Article  Google Scholar 

  28. Yang M, Baranov E, Wang JW et al (2002) Direct external imaging of nascent cancer, tumor progression, angiogenesis, and metastasis on internal organs in the fluorescent orthotopic model. Proc Natl Acad Sci USA 99:3824–3829

    Article  PubMed  CAS  Google Scholar 

  29. Hoffman RM (2002) Green fluorescent protein imaging of tumor growth, metastasis, and angiogenesis in mouse models. Lancet Oncol 3:546–556

    Article  PubMed  CAS  Google Scholar 

  30. Yamamoto N, Yang M, Jiang P et al (2003) Real-time imaging of individual fluorescent proteins color-coded metastatic colonies in vivo. Clin Exp Metastasis 20:633–638

    Article  PubMed  CAS  Google Scholar 

  31. Robinett CC, Straight A, Li G et al (1996) In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J Cell Biol 135:1685–1700

    Article  PubMed  CAS  Google Scholar 

  32. Straight AF, Belmont AS, Robinett CC et al (1996) GFP tagging of budding yeast chromosomes reveals that protein–protein interactions can mediate sister chromatid cohesion. Curr Biol 6:1599–1608

    Article  PubMed  CAS  Google Scholar 

  33. Shelby RD, Hahn KM, Sullivan KF (1996) Dynamic elastic behavior of alpha-satellite DNA domains visualized in situ in living human cells. J Cell Biol 135:545–557

    Article  PubMed  CAS  Google Scholar 

  34. Flach J, Bossie M, Bogel J et al (1994) A yeast RNA-binding protein shuttles between the nucleus and the cytoplasm. Mol Cell Biol 14:8399–8407

    PubMed  CAS  Google Scholar 

  35. Kanda T, Sullivan KF, Wahl GM (1998) Histone-GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells. Curr Biol 8:377–385

    Article  PubMed  CAS  Google Scholar 

  36. Manders EM, Visser AE, Koppen A et al (2003) Four-dimensional imaging of chromatin dynamics during the assembly of the interphase nucleus. Chromosome Res 11:537–547

    Article  PubMed  CAS  Google Scholar 

  37. Chambers AF, Schmidt EE, MacDonald IC et al (1992) Early steps in hematogenous metastasis of B16F1 melanoma cells in chick embryos studied by high-resolution intravital videomicroscopy. J Natl Cancer Inst 84:797–803

    Article  PubMed  CAS  Google Scholar 

  38. Matz MV, Fradkov AF, Labas YA et al (1999) Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol 17:969–973

    Article  PubMed  CAS  Google Scholar 

  39. Yamamoto N, Jiang P, Yang M et al (2004) Cellular dynamics visualized in live cells in vitro and in vivo by differential dual-color nuclear–cytoplasmic fluorescent-protein expression. Cancer Res 64:4251–4256

    Article  PubMed  CAS  Google Scholar 

  40. Alberts B, Johnson A, Lewis J et al (2002) Molecular biology of the cell, 4th edn. Garland Science, New York

    Google Scholar 

  41. Yamauchi K, Yang M, Hayashi K et al (2007) Imaging of nucleolar dynamics during the cell cycle of cancer cells in live mice. Cell Cycle 6:2706–2708

    Article  PubMed  CAS  Google Scholar 

  42. Yamauchi K, Yang M, Hayashi K et al (2008) Induction of cancer metastasis by cyclophosphamide pretreatment of host mice: an opposite effect of chemotherapy. Cancer Res 68:516–520

    Article  PubMed  CAS  Google Scholar 

  43. Hayashi K, Jiang P, Yamauchi K et al (2007) Real-time imaging of tumor-cell shedding and trafficking in lymphatic channels. Cancer Res 67:8223–8228

    Article  PubMed  CAS  Google Scholar 

  44. Yamauchi K, Yang M, Jiang P et al (2006) Development of real-time subcellular dynamic multicolor imaging of cancer-cell trafficking in live mice with a variable-magnification whole-mouse imaging system. Cancer Res 66:4208–4214

    Article  PubMed  CAS  Google Scholar 

  45. Yamauchi K, Yang M, Jiang P et al (2005) Real-time in vivo dual-color imaging of intracapillary cancer cell and nucleus deformation and migration. Cancer Res 65:4246–4252

    Article  PubMed  CAS  Google Scholar 

  46. Hayashi K, Yamauchi K, Yamamoto N et al (2007) Dual-color imaging of angiogenesis and its inhibition in bone and soft tissue sarcoma. J Surg Res 140:165–170

    Article  PubMed  Google Scholar 

  47. Hayashi K, Yamauchi K, Yamamoto N et al (2009) A color-coded orthotopic nude-mouse treatment model of brain-metastatic paralyzing spinal cord cancer that induces angiogenesis and neurogenesis. Cell Prolif 42:75–82

    Article  PubMed  CAS  Google Scholar 

  48. Amoh Y, Li L, Yang M et al (2004) Nascent blood vessels in the skin arise from nestin-expressing hair-follicle cells. Proc Natl Acad Sci USA 101:13291–13295

    Article  PubMed  CAS  Google Scholar 

  49. Li L, Mignone J, Yang M et al (2003) Nestin expression in hair follicle sheath progenitor cells. Proc Natl Acad Sci USA 100:9958–9961

    Article  PubMed  CAS  Google Scholar 

  50. Yamamoto N, Yang M, Jiang P et al (2004) Color coding cancer cells with fluorescent proteins to visualize in vivo cellular interaction in metastatic colonies. Anticancer Res 24:4067–4072

    PubMed  Google Scholar 

  51. Yamamoto N, Yang M, Jiang P et al (2003) Determination of clonality of metastasis by cell-specific color-coded fluorescent-protein imaging. Cancer Res 63:7785–7790

    PubMed  CAS  Google Scholar 

  52. Ramaswamy S, Ross KN, Lander ES et al (2003) A molecular signature of metastasis in primary solid tumors. Nat Genet 33:49–54

    Article  PubMed  CAS  Google Scholar 

  53. Bernards R, Weinberg RA (2002) A progression puzzle. Nature (Lond) 418:823

    Article  CAS  Google Scholar 

  54. Yamamoto N, Yang M, Jiang P et al (2003) Real-time GFP imaging of spontaneous HT-1080 fibrosarcoma lung metastases. Clin Exp Metastasis 20:181–185

    Article  PubMed  Google Scholar 

  55. Kimura H, Hayashi K, Yamauchi K et al (2010) Real-time imaging of single cancer-cell dynamics of lung metastasis. J Cell Biochem 109:58–64

    PubMed  CAS  Google Scholar 

  56. Spoelstra EN, Ince C, Koeman A et al (2007) A novel and simple method for endotracheal intubation of mice. Lab Anim 41:128–135

    Article  PubMed  CAS  Google Scholar 

  57. Vergari A, Polito A, Musumeci M et al (2003) Videoassisted orotracheal intubation in mice. Lab Anim 37:204–206

    Article  PubMed  CAS  Google Scholar 

  58. Kimura H, Lee C, Hayashi K et al (2010) UV light killing efficacy of fluorescent protein-expressing cancer cells in vitro and in vivo. J Cell Biochem 110:1439–1446

    Article  PubMed  CAS  Google Scholar 

  59. Hayashi K, Zhao M, Yamauchi K et al (2009) Systemic targeting of primary bone tumor and lung metastasis of high-grade osteosarcoma in nude mice with a tumor-selective strain of Salmonella typhimurium. Cell Cycle 8:870–875

    Article  PubMed  CAS  Google Scholar 

  60. Kimura H, Zhang L, Zhao M et al (2010) Targeted therapy of spinal cord glioma with a genetically modified Salmonella typhimurium. Cell Prolif 43:41–48

    Article  PubMed  CAS  Google Scholar 

  61. Hayashi K, Zhao M, Yamauchi K et al (2009) Cancer metastasis directly eradicated by targeted therapy with a modified Salmonella typhimurium. J Cell Biochem 106:992–998

    Article  PubMed  CAS  Google Scholar 

  62. Zhao M, Yang M, Li XM et al (2005) Tumor-targeting bacterial therapy with amino acid auxotrophs of GFP-expressing Salmonella typhimurium. Proc Natl Acad Sci USA 102:755–760

    Article  PubMed  CAS  Google Scholar 

  63. Zhao M, Yang M, Ma H et al (2006) Targeted therapy with a Salmonella typhimurium leucine–arginine auxotroph cures orthotopic human breast tumors in nude mice. Cancer Res 66:7647–7652

    Article  PubMed  CAS  Google Scholar 

  64. Zhao M, Geller J, Ma H et al (2007) Monotherapy with a tumor targeting mutant of Salmonella typhimurium cures orthotopic metastatic mouse models of human prostate cancer. Proc Natl Acad Sci USA 104:10170–10174

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

No author has any conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norio Yamamoto.

About this article

Cite this article

Yamamoto, N., Tsuchiya, H. & Hoffman, R.M. Tumor imaging with multicolor fluorescent protein expression. Int J Clin Oncol 16, 84–91 (2011). https://doi.org/10.1007/s10147-011-0201-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-011-0201-y

Keywords

Navigation