Skip to main content
Log in

Estimating hominid life history: the critical interbirth interval

  • SPECIAL FEATURE: ORIGINAL ARTICLE
  • Evolutionary demography: the dynamic and broad intersection of ecology and evolution
  • Published:
Population Ecology

Abstract

Unlike any great apes, humans have expanded into a wide variety of habitats during the course of evolution, beginning with the transition by australopithecines from forest to savanna habitation. Novel environments are likely to have imposed hominids a demographic challenge due to such factors as higher predation risk and scarcer food resources. In fact, recent studies have found a paucity of older relative to younger adults in hominid fossil remains, indicating considerably high adult mortality in australopithecines, early Homo, and Neanderthals. It is not clear to date why only human ancestors among all hominoid species could survive in these harsh environments. In this paper, we explore the possibility that hominids had shorter interbirth intervals to enhance fertility than the extant apes. To infer interbirth intervals in fossil hominids, we introduce the notion of the critical interbirth interval, or the threshold length of birth spacing above which a population is expected to go to extinction. We develop a new method to obtain the critical interbirth intervals of hominids based on the observed ratios of older adults to all adults in fossil samples. Our analysis suggests that the critical interbirth intervals of australopithecines, early Homo, and Neanderthals are significantly shorter than the observed interbirth intervals of extant great apes. We also discuss possible factors that may have caused the evolutionary divergence of hominid life history traits from those of great apes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alemseged Z, Spoor F, Kimbel WH, Bobe R, Geraads D, Reed D, Wynn JG (2006) A juvenile early hominin skeleton from Dikika. Ethiop Nat 443:296–301

    CAS  Google Scholar 

  • Anderson SE, Dallal GE, Must A (2003) Relative weight and race influence average age at menarche: results from two nationally representative surveys of US girls studied 25 years apart. Pediatrics 111:844–850

    Article  PubMed  Google Scholar 

  • Arsuaga JL, Lorenzo C, Carretero JM, Gracia A, Martínez I, García N, de Castro JMB, Carbonell E (1999) A complete human pelvis from the Middle Pleistocene of Spain. Nature 399:255–258

    Article  PubMed  CAS  Google Scholar 

  • Austin C, Smith TM, Bradman A, Hinde K, Joannes-Boyau R, Bishop D, Hare DJ, Doble P, Eskenazi B, Arora M (2013) Barium distributions in teeth reveal early-life dietary transitions in primates. Nature 498:216–219

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Behrensmeyer AK (2006) Climate change and human evolution. Science 311:476–478

    Article  PubMed  CAS  Google Scholar 

  • Blurton Jones NG, Hawkes K, O’Connell J (2002) The antiquity of postreproductive life: Are there modern impacts on hunter-gatherer postreproductive lifespans? Hum Biol 14:184–205

    Article  Google Scholar 

  • Bonnefille R (2010) Cenozoic vegetation, climate changes and hominid evolution in tropical Africa. Global Planet Change 72:390–411

    Article  Google Scholar 

  • Boyd R, Silk JB (2010) How humans evolved, 5th edn. WW Norton & Company, New York

    Google Scholar 

  • Brain CK (1981) The hunters or the hunted? An introduction to African cave taphonomy. University of Chicago Press, Chicago

    Google Scholar 

  • Bronikowski AM, Altmann J, Brockman DK, Cords M, Fedigan LM, Pusey A, Stoinski T, Morris WF, Strier KB, Alberts SC (2011) Aging in the natural world: comparative data reveal similar mortality patterns across primates. Science 331:1325–1328

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Caro TM, Sellen DW, Parish A, Frank R, Brown DM, Voland E, Mulder MB (1995) Termination of reproduction in nonhuman and human female primates. Int J Primatol 16:205–220

    Article  Google Scholar 

  • Caspari R, Lee SH (2004) Older age becomes common late in human evolution. Proc Natl Acad Sci USA 101:10895–10900

    Article  PubMed  CAS  Google Scholar 

  • Caspari R, Lee SH (2006) Is human longevity a consequence of cultural change or modern biology? Am J Phys Anthropol 129:512–517

    Article  PubMed  Google Scholar 

  • Cerling TE, Wynn JG, Andanje SA, Bird MI, Korir DK, Levin NE, Mace W, Macharia AN, Quade J, Remien CH (2011) Woody cover and hominin environments in the past 6 million years. Nature 476:51–56

    Article  PubMed  CAS  Google Scholar 

  • de Castro JMB, Nicolás ME (1997) Palaeodemography of the Atapuerca-SH Middle Pleistocene hominid sample. J Hum Evol 33:333–355

    Article  Google Scholar 

  • deMenocal PB (2011) Climate and human evolution. Science 331:540–542

    Article  PubMed  CAS  Google Scholar 

  • Dyke B, Gage TB, Alford PL, Swenson B, Williams-Blangero S (1995) A model life table for captive chimpanzees. Am J Primatol 37:25–37

    Article  Google Scholar 

  • Early JD, Headland TN (1998) Population dynamics of a Philippine rain forest people: The San Ildefonso Agta. University Press of Florida, Gainesville

    Google Scholar 

  • Early JD, Peters JF (2000) The Xilixana Yanomami of the Amazon: History, social structure, and population dynamics. University Press of Florida, Gainsville

    Google Scholar 

  • Green DJ, Alemseged Z (2012) Australopithecus afarensis scapular ontogeny, function, and the role of climbing in human evolution. Science 338:514–517

    Article  PubMed  CAS  Google Scholar 

  • Gurven M, Kaplan H (2007) Longevity among hunter-gatherers: a cross-cultural examination. Popul Dev Rev 33:321–365

    Article  Google Scholar 

  • Gurven M, Kaplan H, Zelada A (2007) Mortality experience of Tsimane Amerindians of Bolivia: Regional and temporal trends. Am J Hum Biol 19:376–398

    Article  PubMed  Google Scholar 

  • Hart D, Sussman RW (2005) Man the hunted: primates, predators, and human evolution. Basic Books, New York

    Google Scholar 

  • Hawkes K, O’Connell JF, Blurton Jones NG, Alvarez H, Charnov EL (1998) Grandmothering, menopause, and the evolution of human life histories. Proc Natl Acad Sci USA 95:1336–1339

    Article  PubMed  CAS  Google Scholar 

  • Henry AG, Ungar PS, Passey BH, Sponheimer M, Rossouw L, Bamford M, Sandberg P, de Ruiter DJ, Berger L (2012) The diet of Australopithecus sediba. Nature 487:90–93

    Article  PubMed  CAS  Google Scholar 

  • Higham T, Douka K, Wood R, Ramsey CB, Brock F, Basell L, Camps M, Arrizabalaga A, Baena J, Barroso-Ruíz C, Bergman C, Boitard C, Boscato P, Caparrós M, Conard NJ, Draily C, Froment A, Galván B, Gambassini P, Garcia-Moreno A, Grimaldi S, Haesaerts P, Holt B, Iriarte-Chiapusso MJ, Jelinek A, Jordá Pardo JF, Maíllo-Fernández JM, Marom A, Maroto J, Menéndez M, Metz L, Morin E, Moroni A, Negrino F, Panagopoulou E, Peresani M, Pirson S, de la Rasilla M, Riel-Salvatore J, Ronchitelli A, Santamaria D, Semal P, Slimak L, Soler J, Soler N, Villaluenga A, Pinhasi R, Jacobi R (2014) The timing and spatiotemporal patterning of Neanderthal disappearance. Nature 512:306–309

    Article  PubMed  CAS  Google Scholar 

  • Hill K, Hurtado AM (1996) Ache life history: the ecology and demography of a foraging people. Aldine de Gruyter, New York

    Google Scholar 

  • Hill K, Boesch C, Goodall J, Pusey A, Williams J, Wrangham R (2001) Mortality rates among wild chimpanzees. J Hum Evol 40:437–450

    Article  PubMed  CAS  Google Scholar 

  • Hill K, Hurtado AM, Walker RS (2007) High adult mortality among Hiwi hunter-gatherers: implications for human evolution. J Hum Evol 52:443–454

    Article  PubMed  Google Scholar 

  • Howell N (1979) Demography of the Dobe !Kung. Academic Press, New York

    Google Scholar 

  • Human Mortality Database (2000) http://www.mortality.org/. Accessed 25 Nov 2016

  • Ihara Y (2002) A model for evolution of male parental care and female multiple mating. Am Nat 160:235–244

    Article  PubMed  Google Scholar 

  • Johanson DC (2004) Lucy, thirty years later: an expanded view of Australopithecus afarensis. J Anthropol Res 60:465–486

    Article  Google Scholar 

  • Kelley J, Schwartz GT (2012) Life-history inference in the early hominins Australopithecus and Paranthropus. Int J Primatol 33:1332–1363

    Article  Google Scholar 

  • Kelley J, Smith TM (2003) Age at first molar emergence in early Miocene Afropithecus turkanensis and life-history evolution in the Hominoidea. J Hum Evol 44:307–329

    Article  PubMed  Google Scholar 

  • Kennedy GE (2003) Palaeolithic grandmothers? Life history theory and early Homo. J Roy Anthropol Inst 9:549–572

    Article  Google Scholar 

  • Klein RG (2009) The human career: human biological and cultural origins, 3rd edn. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Kleinbaum D, Kupper L, Nizam A, Rosenberg E (2008) Applied regression analysis and other multivariable methods, 4th edn. Duxbury, North Scituate

    Google Scholar 

  • Knott CD, Emery Thompson M, Wich SA (2009) The ecology of female reproduction in wild orangutans. In: Wich SA, Utami Atmoko SS, Mitra Setia T, van Schaik CP (eds) Orangutans: geographic variation in behavioral ecology and conservation. Oxford University Press, New York, pp 171–188

    Google Scholar 

  • Kohler IV, Preston S, Lackey LB (2006) Comparative mortality levels among selected species of captive animals. Demogr Res 15:413–434

    Article  Google Scholar 

  • Kokko H (1999) Cuckoldry and the stability of biparental care. Ecol Lett 2:247–255

    Article  Google Scholar 

  • Lancaster Jones F (1963) A demographic survey of the Aboriginal population of the northern territory, with special reference to Bathurst island mission. Australian Institute of Aboriginal Studies, Canberra

    Google Scholar 

  • Layrisse M, Salas G, Heinen HD (1980) Vital statistics of five Warao subtribes. In: Wilbert J, Layrisse M (eds) Demographic and biological studies of the Warao Indians. UCLA Latin American Center, Los Angeles, pp 60–69

    Google Scholar 

  • Littleton J (2005) Fifty years of chimpanzee demography at Taronga Park Zoo. Am J Primatol 67:281–298

    Article  PubMed  Google Scholar 

  • Louchart A, Wesselman H, Blumenschine RJ, Hlusko LJ, Njau JK, Black MT, Asnake M, White TD (2009) Taphonomic, avian, and small-vertebrate indicators of Ardipithecus ramidus habitat. Science 326:66–66e4

    Article  CAS  Google Scholar 

  • Lovejoy CO (1981) The origin of man. Science 211:341–350

    Article  PubMed  CAS  Google Scholar 

  • Lovejoy CO (2009) Reexamining human origins in light of Ardipithecus ramidus. Science 326:74–74e8

    Article  CAS  Google Scholar 

  • Luetenegger W (1978) Scaling of sexual dimorphism in body size and breeding system in primates. Nature 272:610–611

    Article  Google Scholar 

  • Machanda Z, Brazeau NF, Bernard AB, Donovan RM, Papakyrikos AM, Wrangham R, Smith TM (2015) Dental eruption in East African wild chimpanzees. J Hum Evol 82:137–144

    Article  PubMed  Google Scholar 

  • Marsden SB, Marsden D, Thompson ME (2006) Demographic and female life history parameters of free-ranging chimpanzees at the Chimpanzee Rehabilitation Project, River Gambia National Park. Int J Primatol 27:391–410

    Article  Google Scholar 

  • Matsumoto-Oda A (2015) How surviving baboons behaved after leopard predation: a case report. Anthropol Sci 123:13–17

    Article  Google Scholar 

  • McKinley KR (1971) Survivorship in gracile and robust australopithecines: a demographic comparison and a proposed birth model. Am J Phys Anthropol 34:417–426

    Article  PubMed  CAS  Google Scholar 

  • Mellars P, French JC (2011) Tenfold population increase in Western Europe at the Neandertal-to-modern human transition. Science 333:623–627

    Article  PubMed  CAS  Google Scholar 

  • Mumby HS, Elks CE, Li S, Sharp SJ, Khaw KT, Luben RN, Wareham NJ, Loos RJF, Ong KK (2011) Mendelian randomisation study of childhood BMI and early menarche. J Obes 2011:180729

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakahashi W (2010) Evolution of learning capacities and learning levels. Theor Pop Biol 78:211–224

    Article  Google Scholar 

  • Nakahashi W (2013) Cultural evolution and learning strategies in hominids. In: Akazawa T, Nishiaki Y, Aoki K (eds) Dynamics of learning in Neanderthals and modern humans, volume 1: Cultural perspectives. Replacement of Neanderthals by Modern Humans Series. Springer Japan, Tokyo, pp 245–254

    Chapter  Google Scholar 

  • Nakahashi W (2014) The effect of cultural interaction on cumulative cultural evolution. J Theor Biol 352:6–15

    Article  PubMed  Google Scholar 

  • Nakahashi W (2016) Coevolution of female ovulatory signals and male–male competition in primates. J Theor Biol 392:12–22

    Article  PubMed  Google Scholar 

  • Nakahashi W (2017) The effect of trauma on Neanderthal culture: A mathematical analysis. HOMO-J Comp Hum Biol 68:83–100

    Article  CAS  Google Scholar 

  • Nakahashi W, Feldman MW (2014) Evolution of division of labor: Emergence of different activities among group members. J Theor Biol 348:65–79

    Article  PubMed  Google Scholar 

  • Nakahashi W, Horiuchi S (2012) Evolution of ape and human mating systems. J Theor Biol 296:56–64

    Article  PubMed  Google Scholar 

  • Neel JV, Weiss KM (1975) The genetic structure of a tribal population, the Yanomama Indian. Am J Phys Anthropol 42:25–52

    Article  PubMed  CAS  Google Scholar 

  • Prüfer K, Racimo F, Patterson N, Jay F, Sankararaman S, Sawyer S, Heinze A, Renaud G, Sudmant PH, de Filippo C, Li H, Mallick S, Dannemann M, Fu Q, Kircher M, Kuhlwilm M, Lachmann M, Meyer M, Ongyerth M, Siebauer M, Theunert C, Tandon A, Moorjani P, Pickrell J, Mullikin JC, Vohr SH, Green RE, Hellmann I, Johnson PLF, Blanche H, Cann H, Kitzman JO, Shendure J, Eichler EE, Lein ES, Bakken TE, Golovanova LV, Doronichev VB, Shunkov MV, Derevianko AP, Viola B, Slatkin M, Reich D, Kelso J, Pääbo S (2014) The complete genome sequence of a Neanderthal from the Altai Mountains. Nature 505:43–49

    Article  PubMed  CAS  Google Scholar 

  • Ramirez Rozzi FV, de Castro JMB (2004) Surprisingly rapid growth in Neanderthals. Nature 428:936–939

    Article  PubMed  CAS  Google Scholar 

  • Robbins AM, Robbins MM, Gerald-Steklis N, Steklis HD (2006) Age-related patterns of reproductive success among female mountain gorillas. Am J Phys Anthropol 131:511–521

    Article  PubMed  Google Scholar 

  • Robbins MM, Robbins AM, Gerald-Steklis N, Steklis HD (2007) Socioecological influences on the reproductive success of female mountain gorillas (Gorilla beringei beringei). Behav Ecol Sociobiol 61:919–931

    Article  Google Scholar 

  • Robson SL, Wood B (2008) Hominin life history: reconstruction and evolution. J Anat 212:394–425

    Article  PubMed  PubMed Central  Google Scholar 

  • Sasaki T, Kondo O (2016) An informative prior probability distribution of the gompertz parameters for bayesian approaches in paleodemography. Am J Phys Anthropol 159:523–533

    Article  PubMed  Google Scholar 

  • Seki M, Wakano JY, Ihara Y (2007) A theoretical study on the evolution of male parental care and female multiple mating: effects of female mate choice and male care bias. J Theor Biol 247:281–296

    Article  PubMed  Google Scholar 

  • Smith BH (1989) Dental development as a measure of life history in primates. Evolution 43:683–688

    Article  PubMed  Google Scholar 

  • Stringer C, Andrews P (2012) The complete world of human evolution, 2nd edn. Thames and Hudson, London

    Google Scholar 

  • Thompson ME, Jones JH, Pusey AE, Brewer-Marsden S, Goodall J, Marsden D, Matsuzawa T, Nishida T, Reynolds V, Sugiyama Y, Wrangham RW (2007) Aging and fertility patterns in wild chimpanzees provide insights into the evolution of menopause. Curr Biol 17:2150–2156

    Article  PubMed Central  CAS  Google Scholar 

  • Thorén S, Lindenfors P, Kappeler PM (2006) Phylogenetic analyses of dimorphism in primates: evidence for stronger selection on canine size. Am J Phys Anthropol 130:50–59

    Article  PubMed  Google Scholar 

  • Trinkaus E (1995) Neanderthal mortality patterns. J Archaeol Sci 22:121–142

    Article  Google Scholar 

  • Trinkaus E (2011) Late Pleistocene adult mortality patterns and modern human establishment. Proc Natl Acad Sci USA 108:1267–1271

    Article  PubMed  Google Scholar 

  • Wakano JY, Ihara Y (2005) Evolution of male parental care and female multiple mating: game-theoretical and two-locus diploid models. Am Nat 166:E32–E44

    Article  PubMed  Google Scholar 

  • Weidenreich F (1943) The skull of Sinanthropus pekinensis. (Palaeontologia Sinica, N.S. D 10; Whole Series 127). National Geological Survey of China, Pehpei, Chungking

    Google Scholar 

  • Welker F, Hajdinjak M, Talamo S, Jaouen K, Dannemann M, David F, Julien M, Meyer M, Kelso J, Barnes I, Brace S, Kamminga P, Fischer R, Kessler BM, Stewart JR, Pääbo S, Collins MJ, Hublin JJ (2016) Palaeoproteomic evidence identifies archaic hominins associated with the Châtelperronian at the Grotte du Renne. Proc Natl Acad Sci USA 113:11162–11167

    Article  PubMed  CAS  Google Scholar 

  • White TD, WoldeGabriel G, Asfaw B, Ambrose S, Beyene Y, Bernor RL, Boisserie JR, Currie B, Gilbert H, Haile-Selassie Y, Hart WK, Hlusko LJ, Howell FC, Kono RT, Lehmann T, Louchart A, Lovejoy CO, Renne PR, Saegusa H, Vrba ES, Wesselman H, Suwa G (2006) Asa Issie, Aramis and the origin of Australopithecus. Nature 440:883–889

    Article  PubMed  CAS  Google Scholar 

  • White TD, Ambrose SH, Suwa G, Su DF, DeGusta D, Bernor RL, Boisserie JR, Brunet M, Delson E, Frost S, Garcia N, Giaourtsakis IX, Haile-Selassie Y, Howell FC, Lehmann T, Likius A, Pehlevan C, Saegusa H, Semprebon G, Teaford M, Vrba E (2009) Macrovertebrate Paleontology and the Pliocene Habitat of Ardipithecus ramidus. Science 326:87–93

    PubMed  CAS  Google Scholar 

  • Wich SA, Utami-Atmoko SS, Setia TM, Rijksen HD, Schürmann C, Van Hooff JARAM, van Schaik CP (2004) Life history of wild Sumatran orangutans (Pongo abelii). J Hum Evol 47:385–398

    Article  PubMed  CAS  Google Scholar 

  • Wolpoff MH (1979) The Krapina dental remains. Am J Phys Anthropol 50:67–113

    Article  Google Scholar 

  • Wood JW (1987) The genetic demography of the Gainj of Papua New Guinea. 2. Determinants of effective population size. Am Nat 129:165–187

    Article  Google Scholar 

  • Wood B (2006) Human evolution: a very short introduction. Oxford University Press, Oxford

    Book  Google Scholar 

  • Wood RE, Barroso-Ruíz C, Caparrós M, Pardo JFJ, Santos BG, Higham TF (2013) Radiocarbon dating casts doubt on the late chronology of the Middle to Upper Palaeolithic transition in southern Iberia. Proc Natl Acad Sci USA 110:2781–2786

    Article  PubMed  Google Scholar 

  • Wynn JG, Sponheimer M, Kimbel WH, Alemseged Z, Reed K, Bedaso ZK, Wilson JN (2013) Diet of Australopithecus afarensis from the Pliocene Hadar formation, Ethiopia. Proc Natl Acad Sci USA 110:10495–10500

    Article  PubMed  Google Scholar 

  • Yamagiwa J (2015) Evolution of hominid life history strategy and origin of human family. In: Furuichi T, Yamagiwa J, Aureli F (eds) Dispersing primate females. Springer Japan, Tokyo, pp 255–285

    Chapter  Google Scholar 

  • Yamagiwa J, Kahekwa J, Basabose AK (2003) Intra-specific variation in social organization of gorillas: implications for their social evolution. Primates 44:359–369

    Article  PubMed  Google Scholar 

  • Yamaguchi K, Holman DJ (2010) Longitudinal analysis of permanent tooth emergence in Japanese children. Anthropological Science 118:141–149

    Article  Google Scholar 

  • Ziker JP, Nolin DA, Rasmussen J (2016) The effects of wealth on male reproduction among monogamous hunter-fisher-trappers in northern Siberia. Curr Anthropol 57:221–229

    Article  Google Scholar 

Download references

Acknowledgements

We thank anonymous reviewers for their fruitful advices to improve the paper. This research was supported in part by JSPS KAKENHI Grant Number JP16K07510, JSPS Topic-Setting Program to Advance Cutting-Edge Humanities and Social Sciences Research, and MEXT Grant-in-Aid for Scientific Research on Innovative Areas #4903, JP17H06381 and #4501, JP25118006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wataru Nakahashi.

Appendices

Appendix 1

Let \(k\) and \(x\) represent the age interval and cut-off age, respectively, adopted in each life table. Then, we have data, \({l_{15}}\), \({l_{15+k}}\), \({l_{15+2k}}\), \(\cdots\), \({l_x}\), and we fix \({l_{x+k}}=0\). Standardizing \({l_{15}}\) as 1, the uncorrected life expectancy at age 15 (\({e_{15({\text{u}})}}\)) corresponds to the area of the survival curve obtained from the data. Thus, using the trapezoidal rule, we have

$$\begin{aligned}{e_{15\left( {\text{u}} \right)}}&=\left( {1+\frac{{{l_{15+k}}}}{{{l_{15}}}}} \right)\frac{k}{2}+\left( {\frac{{{l_{15+k}}}}{{{l_{15}}}}+\frac{{{l_{15+2k}}}}{{{l_{15}}}}} \right)\frac{k}{2}\\ & \quad +\,\cdots +\left( {\frac{{{l_x}}}{{{l_{15}}}}+0} \right)\frac{k}{2}~~=\frac{k}{2}+\mathop \sum \limits_{{i=1}}^{{\left( {x - 15} \right)/k}} \frac{{k{l_{15+ik}}}}{{{l_{15}}}}.\end{aligned}$$
(8)

Here, the life expectancy at the cut-off age is \(k/2\) years, which is generally too short. Thus, we have to add something to \({e_{15\left( {\text{u}} \right)}}\) to obtain a more realistic life expectancy. Since the adult life expectancy generally decreases in age, the life expectancy at the cut-off age may be smaller than that at age 15. Therefore, we add a half of the (uncorrected) life expectancy at age 15 to the life expectancy at the cut-off age, and have the corrected life expectancy at age 15:

$${e_{15\left( {\text{c}} \right)}}={e_{15\left( {\text{u}} \right)}}+\frac{{{e_{15\left( {\text{u}} \right)}}{l_x}}}{{2{l_{15}}}}.{\text{~}}$$
(9)

That is, proportion \({l_x}/{l_{15}}\) of adult individuals have an additional lifetime \({e_{15\left( {\text{u}} \right)}}/2\), i.e., the life expectancy at the cut-off age is \(({e_{15\left( {\text{u}} \right)}}+k)/2\) years.

Appendix 2

When the probability with which an individual having survived to age \(15\) will survive to age \(15+x\) is represented as \(~l\left( x \right)={\text{exp}}\left( { - \mu x} \right)\), we have

$${e_{15}}=\int \limits_{{x=0}}^{\infty } l\left( x \right)dx=\frac{1}{\mu }.~$$
(10)

Then, the older adult ratio, i.e., the probability with which an individual having survived to age \(15\) will survive to age \(15+15=30\), is given by \(r=l\left( {15} \right)={\text{exp}}\left( { - 15\mu } \right)\), i.e., \(\log r= - 15\mu\), so that we have

$${e_{15}}= - \frac{{15}}{{\log r}}.$$
(11)

Appendix 3

As in Appendix 2, when \(l\left( x \right)={\left( {1 - x/M} \right)^s}\) for \(x<M\) and \(l\left( x \right)=0\) for \(x \geqslant M\), we have

$${e_{15}}=\int \limits_{{x=0}}^{M} l\left( x \right)dx=\frac{M}{{1+s}}.$$
(12)

Then, \(r=l\left( {15} \right)={\left( {1 - 15/M} \right)^s}\), i.e., \(\log r=s~\log \left( {1 - 15/M} \right)\), so that we have

$${e_{15}}=\frac{M}{{1+\frac{{\log r}}{{\log \left( {1 - 15/M} \right)}}}}.{\text{~}}$$
(13)

Appendix 4

Since the probability that an individual having survived to age \(15\) will survive to age \(15+x\) is \(l\left( x \right)\) and that he/she will die between age \(x\) and \(x+{\Delta}x\) is \(- l^{\prime}\left( x \right){\Delta}x\), the instantaneous mortality rate at age \(15+x\) is given by

$$h\left( x \right)= - \frac{{l^{\prime}\left( x \right)}}{{l\left( x \right)}},~$$
(14)

i.e.,

$${\left[ {\log l\left( x \right)} \right]^\prime }= - h\left( x \right).$$
(15)

Therefore, when \(h\left( x \right)=a{\text{exp}}\left( {bx} \right)\), we have

$$\log l\left( x \right)= - \int \nolimits^{} a{\text{exp}}\left( {bx} \right)dx=\frac{a}{b}\left[ {1 - {\text{exp}}\left( {bx} \right)} \right],$$
(16)

because \(l\left( 0 \right)=1\), i.e.,

$$l\left( x \right)={\text{exp}}\left\{ {\frac{a}{b}\left[ {1 - {\text{exp}}\left( {bx} \right)} \right]} \right\}.$$
(17)

Since \(r=l\left( {15} \right)={\text{exp}}\left\{ {(a/b)\left[ {1 - {\text{exp}}\left( {15b} \right)} \right]} \right\}\), i.e.,

$$\frac{a}{b}=\frac{{\log r}}{{1 - {\text{exp}}\left( {15b} \right)}},$$
(18)

we have

$${e_{15}}=\int \limits_{{x=0}}^{\infty } l\left( x \right)dx= \int \limits_{0}^{\infty } {\text{exp}}\left( {\frac{{1 - {\text{exp}}\left( {bx} \right)}}{{1 - \exp \left( {15b} \right)}}\log r} \right)dx.$$
(19)

Appendix 5

The methods of calculating the 95% prediction intervals are as follows. For the polynomial regression model of the life expectancies at age 15 (\({e_{15}}\)), since linear functions are selected, we simply adopt the standard prediction interval function for linear regression analysis (Kleinbaum et al. 2008). The 95% prediction intervals of the probability of survival from birth to age 15 (\({l_{15}}\)) are similarly obtained because a linear function is also selected when Taï chimpanzee population is removed. For the Gompertz model of the life expectancies at age 15 (\({e_{15}}\)), using Mathematica 7.0, we obtain the 95% confidence intervals of parameter b (the range of b in which the residual is smaller than \(1+{F_{1,34,0.05}}/34\) times the minimum residual, where F is the F distribution and 34 is the degree of freedom) to calculate the 95% prediction intervals of \({e_{15}}\). The 95% prediction intervals of \({B_C}\) are obtained from the 95% prediction intervals of \({e_{15}}\) and \({l_{15}}\) because \(\log {B_C}=\log {l_{15}}+\log {e_{15}} - \log 2\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakahashi, W., Horiuchi, S. & Ihara, Y. Estimating hominid life history: the critical interbirth interval. Popul Ecol 60, 127–142 (2018). https://doi.org/10.1007/s10144-018-0610-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10144-018-0610-0

Keywords

Navigation